Examples



mdbootstrap.com



 
Статья
2021

Mass Spectrometric Study of Teflon Degradation Products after Mechanochemical Activation via Surface-Activated Laser Desorption/Ionization


A. Yu. SholokhovaA. Yu. Sholokhova, A. I. MalkinA. I. Malkin, A. K. BuryakA. K. Buryak
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421040245
Abstract / Full Text

Mixtures of Teflon and powders of metals (magnesium and tungsten) and non-metals (boron and silicon) after their joint mechanochemical activation are analyzed via surface-activated laser desorption/ionization. It is shown that this technique allows determination of the chemistry of surfaces of metals and non-metals, along with the decomposition degree of Teflon. It is established that the oligomeric Teflon degradation products can be registered up to 2500 Da along with low-molecular degradation when analyzing Teflon mixtures with magnesium.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, RussiaA. Yu. Sholokhova, A. I. Malkin & A. K. Buryak
References
  1. G. J. Puts, P. Crouse, and B. M. Ameduri, Chem. Rev. 119, 1763 (2019). https://doi.org/10.1021/acs.chemrev.8b00458
  2. A. Nag, A. Baksi, J. Ghosh, et al., ACS Sustainable Chem. Eng. 7, 17554 (2019). https://doi.org/10.1021/acssuschemeng.9b03573
  3. S. Ebnesajjad, Expanded PTFE Applications Handbook: Technology, Manufacturing, and Applications (Elsevier, Amsterdam, 2017), p. 286.
  4. Y. Li, C. Jiang, Z. Wang, et al., Materials 9, 936 (2016). https://doi.org/10.3390/ma9110936
  5. K. L. Chintersingh, M. Schoenitz, and E. L. Dreizin, Combust. Flame 173, 288 (2016). https://doi.org/10.1016/j.combustflame.2016.08.027
  6. C. Ge, Y. Dong, and W. Maimaitituersun, Materials 9, 590 (2016). https://doi.org/10.3390/MA9070590
  7. L. N. Ignatieva, G. A. Zverev, N. A. Adamenko, et al., J. Fluorine Chem. 217, 58 (2019). https://doi.org/10.1016/j.jfluchem.2018.11.008
  8. L. N. Ignatieva, G. A. Zverev, N. A. Adamenko, et al., J. Fluorine Chem. 172, 68 (2015). https://doi.org/10.1016/j.jfluchem.2015.02.002
  9. L. N. Ignat’eva, N. A. Adamenko, A. V. Kazurov, et al., Inorg. Mater. Appl. Res. 4, 468 (2013). https://doi.org/10.1134/S2075113313050067
  10. V. V. Boldyrev, Russ. Chem. Rev. 75, 177 (2006).
  11. T. R. Sippel, S. F. Son, and L. J. Groven, Propell. Explos. Pyrotech. 38, 286 (2013). https://doi.org/10.1002/prep.201200102
  12. T. D. Hedman, A. R. Demko, and J. Kalman, Combust. Flame 198, 112 (2018). https://doi.org/10.1016/j.combustflame.2018.08.020
  13. I. S. Pytskii and A. K. Buryak, Prot. Met. Phys. Chem. Surf. 50, 121 (2014). https://doi.org/10.1134/S2070205114010109
  14. I. S. Pytskii, A. S. Pashinin, A. M. Emel’yanenko, and A. K. Buryak, Colloid J. 77, 65 (2015). https://doi.org/10.7868/S0023291215010139
  15. A. I. Malkin, A. A. Fomkin, V. A. Klyuev, et al., Prot. Met. Phys. Chem. Surf. 51, 81 (2015). https://doi.org/10.7868/S0044185615010088
  16. M. L. Drummond, V. Meunier, and B. G. Sumpter, J. Phys. Chem. A 111, 6539 (2007).
  17. L. Andrews and T. R. Burkholder, J. Phys. Chem. 95, 8554 (1991). https://doi.org/10.1021/j100175a028
  18. D. Z. Li, L. Y. Feng, L. J. Zhang, et al., J. Phys. Chem. A 122, 2297 (2018). https://doi.org/10.1021/acs.jpca.7b12479
  19. A. Yu. Sholokhova, A. I. Malkin, and A. K. Buryak, Russ. J. Phys. Chem. A 94, 2135 (2020).
  20. A. A. Vaganov, V. S. Rudnev, A. D. Pavlov, et al., Mater. Chem. Phys. 22, 436 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.029
  21. L. S. Wang, S. R. Desai, H. Wu, and J. B. Nichloas, Z. Phys. D 40, 36 (1997). https://doi.org/10.1007/s004600050152
  22. A. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 67, 06320313 (2003). https://doi.org/10.1103/PhysRevA.67.063203
  23. M. Haertelt, A. Fielicke, G. Meijer, et al., Phys. Chem. Chem. Phys. 14, 2849 (2012). https://doi.org/10.1039/c2cp23432g
  24. H. J. Zhai, B. Kiran, L. F. Cui, et al., J. Am. Chem. Soc. 126, 16134 (2004). https://doi.org/10.1021/ja046536s
  25. S. Li and D. A. Dixon, J. Phys. Chem. A 110, 6231 (2006). https://doi.org/10.1021/jp060735b
  26. S. Kluge, H. Wiggers, and C. Schulz, Proc. Combust. Inst. 36, 1037 (2017). https://doi.org/10.1016/j.proci.2016.06.165
  27. X. Yang, X. K. Hu, A. V. Loboda, and R. H. Lipson, Adv. Mater. 22, 4520 (2010). https://doi.org/10.1002/adma.201001627
  28. Chemical Encyclopedy, Ed. by I. L. Knunyants (Bol’sh. Ross. Entsiklopediya, Moscow, 1998), Vol. 1, p. 783 [in Russian].
  29. M. I. Alymov, S. G. Vadchenko, I. S. Gordopolova, I. V. Saikov, and I. V. Milyukova, Inorg. Mater. 54, 1175 (2018). https://doi.org/10.1134/S0002337X18110015