Compacts of Boron-Doped Synthetic Diamond: Lowering of Synthesis Temperature and Its Effect on the Doping Level and Electrochemical Behavior

Yu. V. Pleskov Yu. V. Pleskov , M. D. Krotova M. D. Krotova , V. V. Elkin V. V. Elkin , E. A. Ekimov E. A. Ekimov
Российский электрохимический журнал
Abstract / Full Text

Substituting of metal (Co, Ni) borides for boron carbide in the boron carbide–graphite growth system for the process of diamond growth in the region of diamond thermodynamic stability allowed lowering the synthesis temperature for the electrodes of this new electrode material―boron-doped diamond compacts―significantly (by ~1000°C) without any deterioration of their electrochemical properties. On the other hand, using of amorphous boron with finer grain as compared with the boron carbide, mixed with graphite, results in a marked increase of the electrodes’ electrochemical efficiency, due to increase in their roughness after the chemical removing of boron-containing inclusions from their surfaces. Thus obtained compact electrodes have wide potential window and low background current in supporting electrolytes, they are well reproducible. Special features of their electrochemical impedance spectroscopy are similar to those of the recently studied compacts synthesized on the basis of boron carbide.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, Russia

    Yu. V. Pleskov, M. D. Krotova & V. V. Elkin

  • Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 142190, Russia

    E. A. Ekimov

  1. Pleskov, Yu.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Electrochemical behavior of new electrode material, Russ. J. Electrochem., 2016, vol. 52, p. 1.
  2. Pleskov, Yu.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Electrochemical behaviour of boron-doped diamond compacts—a new electrode material, Electrochim. Acta, 2016, vol. 201, p. 268.
  3. Pleskov, Yu.V., Elektrokhimiya almaza (Electrochemistry of Diamond), Moscow: Editorial URSS, 2003.
  4. Pleskov, Yu.V., Electrochemistry of diamond: AReview, Russ. J. Electrochem., 2002, vol. 38, p. 1275.
  5. Electrochemistry of Diamond, Fujishima, A., Einaga, Y., Rao, T.N., and Tryk, D.A., Eds., Tokyo: bkc & Amsterdam: Elsevier, 2005.
  6. Synthetic Diamond Films: Preparation, Electrochemistry, Characterization and Applications, Brillas, E. and Martinez-Huitle, C.A., Eds., New York: Wiley, 2011.
  7. Topics in Applied Physics, vol. 121, Yang, N., Ed., Springer, 2015.
  8. Bovenkerk, H.P., Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H., Preparation of diamond, Nature, 1959, vol. 184, p. 1094.
  9. Vereshchagin, L.F., Collected works “Sinteticheskie almazy i gidroekstruzia” (Synthetic Diamonds and Hydroextrusion), Moscow: Nauka, 1982, p. 78, 80.
  10. Vereshchagin, L.F., Yakovlev, E.N., Varfolomeeva, T.D., Slesarev, V.N., and Shterenberg, L.E., USSR Inventor’s Certificate no. 329760, 1970.
  11. Vereshchagin, L.F., Yakovlev, E.N., Slesarev, V.N., Varfolomeeva, T.D., Preobrazhenskii, A.Ya., Stepanov, V.A., and Shterenberg, L.E., USSR Inventor’s Certificate no. 329761, 1970.
  12. Egiazaryan, G.A., Safaryan, A.M., and Matosyan, M.A., Studies in mechanical properties of synthetic polycrystalline diamonds of carbonado type upon thermal treatment, Almazy i sverkhtverdye materialy (Diamond and Ultrahard Materials), 1976, p. 5.
  13. Zhang, J.Q., Ma, H.A., Jiang, Y.P., Liang, Z.Z., Tian, Y., and Jia, X., Effects of the additive boron on diamond crystals synthesized in the system of Fe-based alloy and carbon at HTHP, Diamond Related Mater., 2007, vol. 16, p. 283.
  14. Ekimov, E.A., Ralchenko, V., and Popovich, A.E., Synthesis of superconducting boron-doped diamond compacts with high elastic moduli and thermal stability, Diamond Related Mater., 2014, vol. 50, p. 15.
  15. Brazhkin, V.V., Ekimov, E.A., Lyapin, A.G., Popova, S.V., Rakhmanina, A.V., Stishov, S.M., and Kato, K., Lattice parameters and thermal expansion of superconducting boron-doped diamonds, Phys. Rev. B., 2006, vol. 74, p. 140502.
  16. Ushizawa, K., Watanabe, K., Ando, T., Sakaguchi, I., Nishitani-Gamo, M., Sato, Y., and Kanda, H., Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond, Diamond Related Mater., 1998, vol. 7, p. 1719.
  17. Ekimov, E.A., Sirotinkin, V.P., Shatalova, T.B., and Lyapin, S.G., Thermally stable, electrically conductive diamond material prepared by high-pressure, hightemperature processing of a graphite+boron carbide mixture, Inorganic Mater., 2015, vol. 51, p. 225.
  18. Wurzinger, P., Pongratz, P., Hartmann, P., Haubner, R., and Lux, B., Investigation of the boron incorporation in polycrystalline CVD diamond films by TEM, EELS and Raman spectroscopy, Diamond Related Mater., 1997, vol. 6, p. 763.
  19. Ekimov, E.A., Sidorov, V.A., Mel’nik, N.N., Gierlotka, S., and Presz, A., Synthesis of polycrystalline diamond in the boron carbide-graphite and borongraphite systems under high pressure and temperature, J. Mater. Sci., 2004, vol. 39, p. 4957.
  20. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems, Handbook), Moscow: Mashinostroenie, 1996, vol. 1.
  21. Lowell, C.E., Solid solution of boron in graphite, J. Amer. Ceram. Soc., 1967, vol. 50, p. 142.
  22. Panizza, M., Michaud, P.A., Cerisola, G., and Comninellis, C., Electrochemical treatment of wastewaters containing organic Treatment of Fenton-refractory olive oil mill wastes pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area, Electrochem. Commun., 2001, vol. 3, p. 336.
  23. Elkin, V.V., Krotova, M.D., and Pleskov, Yu.V., Polarization complex-plane plot of impedance for two-stage charge-transfer reaction complicated with an intermediate adsorption (by example of benzene oxidation at boron-doped diamond electrode), Electrochim. Acta, 2014, vol. 144, p. 412.