Статья
2017

Equilibrium electro-convective instability in concentration polarization: The effect of non-equal ionic diffusivities and longitudinal flow


Ramadan Abu-Rjal Ramadan Abu-Rjal , Leonid Prigozhin Leonid Prigozhin , Isaak Rubinstein Isaak Rubinstein , Boris Zaltzman Boris Zaltzman
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517090026
Abstract / Full Text

For a long time, based on the analysis pertaining to a perfectly charge selective interface, electro-convective instability in concentration polarization was attributed to a nonequilibrium mechanism related to the extended space charge which forms next to that of the electric double layer near the limiting current. More recently, it was shown that imperfect charge selectivity of the interface makes equilibrium instability possible, driven by either equilibrium electro-osmosis or bulk electro-convection, or both. In that study, addressing stability of a quiescent binary electrolyte, equal ionic diffusivities were assumed. Here we study the effect of non-equal ionic diffusivities and imposed longitudinal flow upon the onset and further nonlinear development of the equilibrium electro-convective instability at a non-perfectly permselective interface. It is observed through a suitable analytical and numerical study that the imposed flow along the perm-selective interface does not affect fundamentally the equilibrium electro-convective instability in concentration polarization either in terms of the temporal instability threshold or the resulting nonlinear flow. For the former, the critical voltage is practically identical with that in quiescent concentration polarization. For the latter, with non-slip interface conditions, the resulting nonlinear flow, with high accuracy, may be represented as a superposition of the imposed Poiseuille flow and the vortices of the quiescent instability. Differing ionic diffusivities may have a considerable effect upon the onset of the electro-convective instability. In particular, co-ionic diffusivity appreciably lower than the counter-ionic one may yield an appreciable increase of the critical voltage. This is explained by the stabilizing effect of the diffusion potential’s contribution to the electric potential fluctuations.

Author information
  • Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel

    Ramadan Abu-Rjal, Leonid Prigozhin, Isaak Rubinstein & Boris Zaltzman

References
  1. Rubinstein, I. and Zaltzman, B., Phys. Rev. E, 2000, vol. 62, p. 2238.
  2. Strathmann H., Desalination, 2010, vol. 264, p. 268.
  3. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G., and Larchet, C., Adv. Colloid Interface Sci., 2010, vol. 160, p. 101.
  4. Mani, A. and Bazant, M.Z., Phys. Rev. E, 2011, vol. 84, p. 061504.
  5. Kwak, R., Pham, V.S., Lim, K.M., and Han, J., Phys. Rev. Lett., 2013, vol. 110, p. 114501.
  6. Wessling, M., Morcillo, L.G., and Abdu, S., Sci. Rep., 2014, vol. 4, p. 4294.
  7. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P., and Pourcelly, G., Desalination, 2014, vol. 342, p. 85.
  8. de Jong, J., Lammertink, R.G.H., and Wessling, M., Lab. Chip, 2006, vol. 6, p. 1125.
  9. Bazant, M.Z. and Squires, T.M., Curr. Opinion Colloid Interface Sci., 2010, vol. 15, p. 203.
  10. Salieb-Beugelaar, G.B., Teapal, J., v. Nieuwkasteele, J., Wijnperlé, D., Tegenfeldt, J.O., Lisdat, F., van den Berg, A., and Eijkel, J.C.T., Nano Lett., 2008, vol. 8, p. 1785.
  11. Mousavi Shaegh, S.A., Nguyen, N.-T., and Chan, S.H., Int. J. Hydrogen Energy, 2011, vol. 36, p. 5675.
  12. Mishchuk, N.A., Heldal, T., Volden, T., Auerswald, J., and Knapp, H., Electrophoresis, 2009, vol. 30, p. 3499.
  13. Grigin, A.P., Elektrokhimiya, 1985, vol. 21, p. 52.
  14. Bruinsma, R. and Alexander, S., J. Chem. Phys., 1990, vol. 92, p. 3074 (1990).
  15. Rubinstein, I., Phys. Fluids A, 1991, vol. 3, p. 2301.
  16. Rubinstein, I. and Maletzki, F., J. Chem. Soc., Faraday Trans., 1991, vol. 87, p. 2079.
  17. Rubinstein, I., Zaltzman, T., and Zaltzman, B., Phys. Fluids, 1995, vol. 7, p. 1467.
  18. Baygents, J.C. and Baldessari, F., Phys. Fluids, 1998, vol. 10, p. 301.
  19. Aleksandrov, R.S., Grigin, A.P., and Davydov, A.D., Russ. J. Electrochem., 2002, vol. 38, p. 616.
  20. Lerman, I., Rubinstein, I., and Zaltzman, B., Phys. Rev. E, 2005, vol. 71, p. 011506.
  21. Pundik, T., Rubinstein, I., and Zaltzman, B., Phys. Rev. E, 2005, vol. 72, p. 061502.
  22. Rubinstein, S.M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R.G.H., Mugele, F., and Wessling, M., Phys. Rev. Lett., 2008, vol. 101, p. 236101.
  23. Druzgalski, C.L., Andersen, M.B., and Mani, A., Phys. Fluids, 2013, vol. 25, p. 110804.
  24. Rubinstein, I. and Shtilman, L., J. Chem. Soc., Faraday Trans., 1979, vol. 75, p. 231.
  25. Dukhin, S.S., Adv. Colloid Interface Sci., 1991, vol. 35, p. 173.
  26. Zaltzman, B. and Rubinstein, I., J. Fluid Mechan., 2007, vol. 579, p. 173.
  27. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, N.J.: Prentice-Hall, 1962.
  28. Dukhin, S.S. and Derjaguin, B.V., Electrophoresis, Moscow: Nauka, 1976.
  29. Squires, T.M. and Bazant, M.Z., J. Fluid Mechan., 2004, vol. 509, p. 217.
  30. Smyrl, W.H. and Newman, J., Trans. Faraday Soc., 1967, vol. 63, p. 207.
  31. Chu, K.T. and Bazant, M.Z., SIAM J. Appl. Math., 2005, vol. 65, p. 1485.
  32. Nikonenko, V.V., Zabolotskii, V.I., and Gnusin, N.P., Sov. Electrochem., 1989, vol. 25, p. 262.
  33. Buck, R.P., J. Electroanalyt. Chem. Interfacial Electrochem., 1973, vol. 46, p. 1.
  34. Spiegler, K.S., Desalination, 1971, vol. 9, p. 367.
  35. Strathmann, H., Ion-Exchange Membrane Separation Processes, Amsterdam: Elsevier, 2004.
  36. Pu, Q., Yun, J., Temkin, H., and Liu, S., Nano Lett., 2004, vol. 4, p. 1099.
  37. Kim, S.J., Wang, Y.-C., Lee, J.H., Jang, H., and Han, J., Phys. Rev. Lett., 2007, vol. 99, p. 044501.
  38. Mani, A., Zangle, T.A., and Santiago, J.G., Langmuir, 2009, vol. 25, p. 3898.
  39. Zangle, T.A., Mani, A., and Santiago, J.G., Langmuir, 2009, vol. 25, p. 3909.
  40. Dydek, E.V., Zaltzman, B., Rubinstein, I., Deng, D.S., Mani, A., and Bazant, M.Z., Phys. Rev. Lett., 2011, vol. 107, p. 118301.
  41. Yossifon, G., Mushenheim, P., and Chang, H.-C., Europhys. Lett., 2010, vol. 90, p. 64004.
  42. Yalcin, S.E., Lee, S.Y., Joo, S.W., Baysal, O., and Qian, S., J. Phys. Chem., 2010, vol. 114, p. 4082.
  43. Corni, I., Ryan, M.P., and Boccaccini, A.R., J. Europ. Ceram. Soc., 2008, vol. 28, p. 1353.
  44. Ulberg, Z.R. and Dukhin, A.S., Progress Org. Coat., 1990, vol. 18, p. 1.
  45. Frilette, V.J., J. Phys. Chem., 1957, vol. 61, p. 168.
  46. Block, M. and Kitchener, J.A., J. Electrochem. Soc., 1966, vol. 113, p. 947.
  47. Simons, R., Desalination, 1979, vol. 28, p. 41.
  48. Simons, R., Nature, 1979, vol. 280, p. 824.
  49. Dydek, E.V. and Bazant, M.Z., AIChE J., 2013, vol. 59, p. 3539.
  50. Deng, D., Dydek, E.V., Han, J.-H., Schlumpberger, S., Mani, A., Zaltzman, B., and Bazant, M.Z., Langmuir, 2013, vol. 29, p. 16167.
  51. Yaroshchuk, A., Zholkovskiy, E., Pogodin, S., and Baulin, V., Langmuir, 2011, vol. 27, p. 11710.
  52. Yaroshchuk, A.E., Adv. Colloid Interface Sci., 2011, vol. 168, p. 278.
  53. Andersen, M.B., van Soestbergen, M., Mani, A., Bruus, H., Biesheuvel, P.M., and Bazant, M.Z., Phys. Rev. Lett., 2012, vol. 109, p. 108301.
  54. Rubinstein, I. and Zaltzman, B., Math. Models Methods Appl. Sci., 2001, vol. 11, p. 263.
  55. Rubinshtein, I., Zaltzman, B., Pretz, J., and Linder, C., Russ. J. Electrochem., 2002, vol. 38, p. 853.
  56. Rubinstein, I. and Zaltzman, B., Phys. Rev. E, 2003, vol. 68, p. 032501.
  57. Pham, V.S., Li, Z., Lim, K.M., White, J.K., and Han, J., Phys. Rev. E, 2012, vol. 86, p. 046310.
  58. Chang, H.C., Yossifon, G., and Demekhin, E.A., in Annual Review of Fluid Mechanics, vol. 44, eds. Davis, S.H. and Moin, P., 2012, p. 401.
  59. Yossifon, G. and Chang, H.-C., Phys. Rev. Lett., 2008, vol. 101, p. 254501.
  60. Bazant, M.Z., Chu, K.T., and Bayly, B.J., SIAM J. Appl. Math., 2005, vol. 65, p. 1463.
  61. Zholkovskij, E.K., Vorotyntsev, M.A., and Staude, E., J. Colloid Interface Sci., 1996, vol. 181, p. 28.
  62. Chang, H.C., Demekhin, E.A., and Shelistov, V.S., Phys. Rev. E, 2012, vol. 86, p. 046319.
  63. Demekhin, E.A., Nikitin, N.V., and Shelistov, V.S., Phys. Fluids, 2013, vol. 25, p. 122001.
  64. Manzanares, J.A., Murphy, W.D., Mafe, S., and Reiss, H., J. Phys. Chem., 1993, vol. 97, p. 8524.
  65. Rubinstein, I. and Zaltzman, B., Phys. Rev. E, 2010, vol. 81, p. 061502.
  66. Rubinstein, I. and Zaltzman, B., Phys. Rev. Lett., 2015, vol. 114, p. 114502.
  67. Jin, X., Joseph, S., Gatimu, E.N., Bohn, P.W., and Aluru, N.R., Langmuir, 2007, vol. 23, p. 13209.
  68. Wang, Y., Pant, K., Chen, Z., Wang, G., Diffey, W.F., Ashley, P., and Sundaram, S., Microfluidics Nanofluidics, 2009, vol. 7, p. 683.
  69. Kim, S.J., Song, Y.-A., and Han, J., Chem. Soc. Rev., 2010, vol. 39, p. 912.
  70. Demekhin, E.A., Shelistov, V.S., and Polyanskikh, S.V., Phys. Rev. E, 2011, vol. 84, p. 036318.
  71. Green, Y. and Yossifon, G., Phys. Rev. E, 2013, vol. 87, p. 033005.
  72. Urtenov, M.K., Uzdenova, A.M., Kovalenko, A.V., Nikonenko, V.V., Pismenskaya, N.D., Vasil’eva, V.I., Sistat, P., and Pourcelly, G., J. Memb. Sci., 2013, vol. 447, p. 190.
  73. Kwak, R., Guan, G., Peng, W.K., and Han, J., Desalination, 2013, vol. 308, p. 138.
  74. Yaroshchuk, A., J. Membr. Sci., 2012, vol. 396, p. 43.
  75. Abu-Rjal, R., Chinaryan, V., Bazant, M.Z., Rubinstein, I., and Zaltzman, B., Phys. Rev. E, 2014, vol. 89, p. 012302.
  76. Abu-Rjal, R., Prigozhin, L., Rubinstein, I., and Zaltzman, B., Phys. Rev. E, 2015, vol. 92, p. 022305.
  77. Schiesser, W.E., The Numerical Method of Lines: Integration of Partial Differential Equations, San Diego: Academic Press, 1991.
  78. Schiesser, W.E. and Griffiths, G.W., A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge, UK: Cambridge University Press, 2009.
  79. Griffiths, G. and Schiesser, W.E., Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple, Burlington: Elsevier Science, 2011.
  80. Bathe, K.J., Finite Element Procedures, Prentice Hall, 2006.
  81. Shampine, L.F. and Reichelt, M.W., SIAM J. Sci. Comput., 1997, vol. 18, p. 1.
  82. Abu-Rjal, R., Rubinstein, I., and Zaltzman, B., Phys. Rev. Fluids, 2016, vol. 1, p. 023601.