Examples



mdbootstrap.com



 
Статья
2021

Mechanism of trans-Azobenzene Izomerization: Role of the Rydberg 3s-Orbital of the Azo-Group and Phenylaminyl-Type Cations


Yu. A. MikheevYu. A. Mikheev
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421110157
Abstract / Full Text

An analysis is performed of data on the transcis-photoisomerization of azobenzene (trans-AB) in light of the Rydberg 3s orbital (R3s) of the azo-group induces the formation of electronically (e-) polarized tautomers (Z+) in addition to its electrically neutral tautomer (Z). The Z+ tautomers have a chromogenic center in the form of a phenylaminyl type cation (PhAT) with a Vis excitation band at λm = 445–450 nm. It is found that the isomerization of trans-AB under the action of Vis light and UV radiation proceeds through the photoexcited polarized e-tautomer Z+*, which undergoes adiabatic changes in its e-configurations under the influence of the R3s-orbital. The Z+* state (with one PhAT cation) then transitions to the Z++* state (with two PhAT cations), which participates in competitive transformations: isomerization in cis-AB and a return to Z+*, which relaxes in Z+. It is shown that a rotational isomerization pathway can form when there are no steric obstacles blocking rotation around the N–N bond. When there are such obstacles, isomerization proceeds through adiabatic displacement of the ph-rings in intermediate Z++*, first into its rectilinear conformation, and then toward one another through the stage of intermediate e-polarized excited state cis-AB*, which has a three-electron bond in addition to the σ-bond of the azo-group between adjacent sp2 orbitals.

Author information
  • Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, RussiaYu. A. Mikheev
References
  1. A. N. Terenin, Photonics of Molecules of Dyes and Related Organic Compounds (Nauka, Leningrad, 1967).
  2. P. F. Gordon and P. Gregory, Organic Chemistry in Colour (Springer, Berlin, 1983).
  3. M. Bockmann, N. L. Doltsinis, and M. Dominik, J. Phys. Chem. A 114, 745 (2010).
  4. M. Pederzoli, J. Pittner, M. Barbatti, and H. Lischka, J. Phys. Chem. A 115, 11136 (2011).
  5. Yu. Harabuchi, M. Ishii, A. Nakayama, et al., J. Chem. Phys. 138, 064305 (2013).
  6. A. J. Neukirch, L. C. Shamberger, E. Abad, et al., J. Chem. Theory Comput. 10, 14 (2014).
  7. J. M. Robertson, J. Chem. Soc., 232 (1939).
  8. G. C. Hampson and J. M. Robertson, J. Chem. Soc., 409 (1941).
  9. M. Kasha, Disc. Faraday Soc., No. 9, 14 (1950).
  10. F. Halverson and R. C. Hirt, J. Chem. Phys. 19, 711 (1951).
  11. G. J. Brealey and M. Kasha, J. Am. Chem. Soc. 77, 4462 (1955).
  12. P. P. Birnbaum, J. H. Linford, and D. W. G. Style, Trans. Faraday Soc. 50, 735 (1954).
  13. P. P. Birnbaum and D. W. G. Style, Trans. Faraday Soc. 50, 1192 (1954).
  14. J. W. Sidman, J. Chem. Rev. 58, 689 (1958).
  15. H. H. Jaffe, Yeh Si-Jung, and R. Gardner, J. Mol. Spectrosc. 2, 120 (1958).
  16. Yu. A. Mikheev, L. N. Guseva, and Yu. A. Ershov, Russ. J. Phys. Chem. A 89, 2036 (2015).
  17. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 92, 1499 (2018).
  18. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 92, 1911 (2018).
  19. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 369 (2019).
  20. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 1411 (2019).
  21. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 94, 196 (2020).
  22. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 94, 1716 (2020).
  23. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 94, 2360 (2020).
  24. N. J. Turro, Molecular Photochemistry (Benjamin, New York, 1965).
  25. S. F. Mason, J. Chem. Soc., 1240 (1959).
  26. Yu. A. Mikheev, L. N. Guseva, and Yu. A. Ershov, Russ. J. Phys. Chem. A 89, 224 (2015).
  27. B. Robin and W. T. Simpson, J. Chem. Phys. 36, 580 (1962).
  28. G. A. Coulson, Valence (Oxford Univ., London, 1961).
  29. D. L. Beveridge and H. H. Jaffe, J. Am. Chem. Soc. 88, 948 (1966).
  30. J. Calvert and J. Pitts, Photochemistry (Wiley, New York, 1967).
  31. K. Higashi, H. Baba, and A. Rembaum, Quantum Organic Chemistry (Interscience, New York, 1965).
  32. P. Bortolus and S. Monti, J. Phys. Chem. 83, 648 (1979).
  33. H. Rau and E. Luddecke, J. Am. Chem. Soc. 104, 1616 (1982).
  34. H. Rau, J. Photochem. 26, 221 (1984).
  35. T. Fujino and T. Tahara, J. Phys. Chem. A 140, 4203 (2000).
  36. S. Monti, G. Orlandi, and P. Palmieri, Chem. Phys. 71, 87 (1982).
  37. P. Cattaneo and M. Persiko, Phys. Chem. Chem. Phys. 1, 4739 (1999).
  38. I. K. Lednev, T.-Q. Ye, R. E. Hestler, and J. N. Moore, J. Phys. Chem. 100, 13338 (1996).
  39. I. K. Lednev, N.-Q. Ye, P. Matousek, et al., Chem. Phys. Lett., No. 290, 68 (1998).
  40. A. Streitwieser, Jr., Molecular Orbital Theory for Organic Chemists (Wiley, New York, 1961).
  41. Ch.-W. Chang, Y.-Ch. Lu, Ts.-Te. Wang, and W.‑G. Diau, J. Am. Chem. Soc. 126, 10109 (2004).
  42. T. Fujino, S. Yu. Arzhantzev, and T. Tahara, J. Phys. Chem. A 105, 8123 (2001).
  43. I. K. Lednev, T.-Q. Ye, L. C. Abbot, et al., J. Phys. Chem. A 102, 9161 (1998).
  44. Ch. M. Stuart, R. R. Frontiera, and R. A. Mathies, J. Phys. Chem. A 111, 12072 (2007).
  45. M. Ya. Mel’nikov and V. A. Smirnov, Photochemistry of Organic Radicals (Mosk. Gos. Univ., Moscow, 1994), p. 69 [in Russian].
  46. D. P. Hoffman, S. R. Ellis, and R. A. Mathies, J. Phys. Chem. A 117, 11472 (2013).