Examples



mdbootstrap.com



 
Статья
2021

Aluminum Nitride Doped with Transition Metal Group Atoms as a Material for Spintronics


S. S. KhludkovS. S. Khludkov, I. A. PrudaevI. A. Prudaev, L. O. RootL. O. Root, O. P. TolbanovO. P. Tolbanov, I. V. IvoninI. V. Ivonin
Российский физический журнал
https://doi.org/10.1007/s11182-021-02264-y
Abstract / Full Text

The overview of scientific literature on the electric and magnetic properties of AlN doped with transition metal group atoms is presented. The review is based on the literature sources published mainly in the last 10 years. The doping was carried out by various methods: during the material growth (molecular beam epitaxy, magnetron sputtering, discharge techniques) or by implantation into the grown material. The presented theoretical and experimental data show that AlN doped with transition metal group atoms has ferromagnetic properties at temperatures above room temperature and is a promising material for spintronics.

Author information
  • National Research Tomsk State University, Tomsk, RussiaS. S. Khludkov, I. A. Prudaev, L. O. Root, O. P. Tolbanov & I. V. Ivonin
References
  1. W. W. Lei, D. Liu, P. W. Zhu, et al., Appl. Phys. Lett., 95, 162501 (2009).
  2. Y. N. Makarov, O. V. Avdeev, and I. S. Barash, J. Cryst. Growth, 310, 881 (2008).
  3. S. V. Mikhailovich, R. R. Galiev, A. V. Zuev, et al., Pisma Zh. Tekh. Fiz., 43, 9 (2017).
  4. D. N. Slapovskii and A. Yu. Pavlov, Fiz. Tekh. Poluprovodn., 51, 461 (2017).
  5. V. N. Bessolov, E. V. Gushchina, E. V. Konenkova, et al., Pisma Zh. Tekh. Fiz., 44, 96 (2018).
  6. I. Wistrela, I. Schmied, M. Schneider, et al., Thin Solid Films, 648, 76 (2018).
  7. S. O. Kucheyev, J. S. Williams, J. Zou, et al., J. Appl. Phys., 92, 3554 (2002).
  8. R. M. J. Espitia, G. J. F. Murillo, and C. O. Lopez, IOP Conf. Ser.: J. Phys.: Conf. Series., 935, 012001 (2017). DOI: https://doi.org/10.1088/1742-6596/935/1/012001.
  9. B. P. Zakharchenya and V. L. Korenev, Usp. Fiz. Nauk, 175, Vyp. 6, 629 ( 2005).
  10. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 323 (2004).
  11. D. Kumar, J. Antifakos, M. G. Blamire, et al., Appl. Phys. Lett., 84, 5004 (2004).
  12. S. J. Pearton, C. R. Abernathy, M. E. Overberg, et al., J. Appl. Phys., 93, 1 (2003).
  13. R. M. Frazier, G. T. Thaler, C. R. Abernathy, et al., J. Appl. Phys., 94, 4956 (2003).
  14. L.-J. Shi, L.-F. Zhu, Y.-H. Zhao, et al., Phys. Rev. B, 78, 195206 (2008).
  15. S. S. Khludkov, I. A. Prudaev, and O. P. Tolbanov, Russ. Phys. J., 55, No. 8, 903-909 (2013).
  16. S. S. Khludkov, I. A. Prudaev, and O. P. Tolbanov, Russ. Phys. J., 60, No. 12, 2177-2185 (2018).
  17. X. Y. Cui, D. Fernandez-Heviab, B. Delley, et al., J. Appl. Phys., 101, 103917 (2007).
  18. J. E. Medvedeva, A. J. Freeman, X. Y. Cui, et al., Phys. Rev. Lett., 94, 146602 (2005).
  19. W. López-Pérez and R. González-Hernández, Comput. Mater. Sci., 91, 1 (2014).
  20. S. W. Fan, K. L. Yao, Z. G. Huang, et al., Chem. Phys. Lett., 482, 62 (2009).
  21. G. Yao, G. Fan, H. Xing, et al., JMMM, 331, 117 (2013).
  22. M. J. R. Espitia, J. H. F. Diaz, and L. E. Castillo, Int. J. Phys. Sci., 11, 11 (2016).
  23. A. Dar and A. Majid, Eur. Phys. J. Appl. Phys., 71, 10101 (2015).
  24. A. Majid, M. Azmat, U. A. Rana, et al., Mater. Chem. Phys., 179, 316 (2016).
  25. Y. Li, W. Fan, H. Sun, et al., J. Solid State Chem., 183, 2662 (2010).
  26. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, et al., Appl. Phys. Lett., 85, 4067 (2004).
  27. H. X. Liu, S. Y. Wu, R. K. Singh, et al., Appl. Phys. Lett., 85,4076 (2004).
  28. R. M. Frazier, G. T. Thaler, J. Y. Leifer, et al., Appl. Phys. Lett., 86, 052101 (2005).
  29. Y. Endo, T. Sato, and A. Takita, IEEE Trans. Magn., 41, 2718 (2005).
  30. S. Y. Wu, H. X. Liu, L. Gu, et al., Appl. Phys. Lett., 82, 3047 (2003).
  31. R. M. Frazier, J. Stapleton, G. T. Thaler, et al., J. Appl. Phys., 94, 1592 (2003).
  32. J. A. Raley, Y. K. Yeo, R. L. Hengehold, et al., J. Alloys Comp., 423, 184 (2006).
  33. A. F. Hebard, R. P. Rairigh, J. G. Kelly, et al., J. Phys. D: Appl. Phys., 37, 511 (2004).
  34. A. Shah, A. Mahmood, Z. Ali, et al., JMMM, 379, 202 (2015).
  35. S. G. Yang, A. B. Pakhomov, S. T. Hung, et al., Appl. Phys. Lett., 81, 2418 (2002).
  36. B. Fan, F. Zeng, C. Chen, et al., J. Appl. Phys., 106, 073907 (2009).
  37. F. Zeng, B. Fan, and Y. C. Yang, J. Vac. Sci. Technol., 28, 62 (2010).
  38. J. Zhang, X. Z. Li, B. Xu, et al., Appl. Phys. Lett., 86, 212504 (2005).
  39. J. Zhang, S. H. Liou, and D. J. Sellmyer, J. Phys.: Condens. Matter., 17, No. 21, (2005).
  40. E. Wistrela, A. Bittner, M. Schneider, et al., J. Appl. Phys., 121, 115302 (2017).
  41. V. I. Litvinov and V. K. Dugaev, Phys. Rev. Lett., 86, 5593 (2001).
  42. A. Majid, R. Sharif, J. J. Zhu, et al., Appl. Phys. A, 96, 979 (2009).
  43. A. Majid, R. Sharif, A. Ali, et al., Jpn. J. Appl. Phys., 48, 040202 (2009).
  44. M.-H. Ham, S. Yoon, Y. Park, et al., J. Crystal Growth., 271, 420 (2004).
  45. R. Frazier, G. Thaler, M. Overberg, et al., Appl. Phys. Lett., 83, 1758 (2003).
  46. R. Wu, N. Jiang, J. Jian, et al., Integr. Ferroel.: An Int. J., 146, 54 (2013).
  47. Y. Yang, Q. Zhao, X. Z. Zhang, et al., Appl. Phys. Lett., 90, 092118 (2007).
  48. X. D. Gao, E. Y. Jiang, and H. H. Liu, et al., Appl. Surf. Sci., 253, 5431 (2007).
  49. X. H. Ji, S. P. Lau, S. F. Yu, et al., Appl. Phys. Lett., 90, 193118 (2007).
  50. V. L. Mazalova, Y. V. Zubavichus, D. S. Chub, et al., IOP Publ. J. Phys.: Conf. Ser., 430, 012112 (2013).
  51. T. J. Regan, H. Ohldag, C. Stamm, et al., Phys. Rev., B 64, 214422 (2001).
  52. H. Li, G. M. Cai, and W. J. Wang, AIP Advances, 6, 065025 (2016).
  53. D. Pan, J. K. Jian, A. Ablat, et al., J. Appl. Phys., 112, 053911 (2012).
  54. H. Tanaka, W. M. Jadwisienczak, S. Kaya, et al., J. Electron. Mater., 42, 844 (2013).
  55. J. Xiong, P. Guo, Y. Cai, et al., J. Alloys Comp., 606, 55 (2014) 55.
  56. C. Zhao, Q. Wan, J. Dai, et al., Opt. Quant. Electron., 49, 116 (2017).
  57. C. Zhao, Q. Wan, J. Dai, et al., Front. Optoelectron. (2017); https://doi.org/10.1007/s12200-017-0728-2.
  58. H. Li, Q. H. Bao, B. Song, et al., Solid State Commun., 148, 406 (2008).
  59. Y. Ren, D. Pan, J. Jian, et al., Integr. Ferroel., An Int. J., 146, 154 (2013).
  60. S. L. Yang, R. S. Gao, P. L. Niu, et al., Appl. Phys. A, 96, 769 (2009).
  61. Y. Q. Chang, D. B. Wang, X. H. Luo, et al., Appl. Phys. Lett., 83, 4020 (2003).
  62. D. Q. Han, Z. F. Wu, Z. H. Wang, et al., Nanotechn., 27, 135603 (2016).
  63. K. Y. Ko, Z. H. Barber, M. G. Blamire, et al., J. Appl. Phys., 100, 083905 (2006).
  64. X. Liu, J. Mi, B. Zhang, et al., J. Alloys Comp., 731, 1037 (2018).
  65. S. S. Khludkov, O. P. Tolbanov, M. D. Vilisova, and I. A. Prudaev, Semiconductor Devices Based on Gallium Arsenide with Deep Impurity Centers, ed. O. P. Tolbanov, Izd. Tomsk. Universiteta, Tomsk (2016).