Examples



mdbootstrap.com



 
Статья
2021

Effect of Steam–Air Treatment of Alumina–Chromia Dehydrogenation Catalysts on Their Physicochemical and Catalytic Characteristics


D. A. NazimovD. A. Nazimov, O. V. KlimovO. V. Klimov, A. V. SaikoA. V. Saiko, A. S. NoskovA. S. Noskov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221090111
Abstract / Full Text

The effect that calcination of an alumina–chromia catalyst containing 13 wt % Cr with additions of Na+ and Zr4+ in an air–water vapor atmosphere (from 0 to 80 vol % water vapor) at 750°С and a pressure of 1 bar exerts on the physicochemical properties of the catalyst and its activity in n-butane dehydrogenation was studied. The steam treatment leads to a slight decrease in the specific surface area (by up to 10%), partial decomposition of Cr(VI) compounds (up to 60%), and Cr2O3 crystallization. The catalytic activity decreases with an increase in the water vapor : air ratio. Low water vapor concentration (10 vol %) favors a significant decrease in the amount of the coke formed (by 60%) without significantly affecting the yield of alkenes. Thus, introduction of water vapor into the calcination atmosphere allows control of the Cr(VI) amount and catalyst selectivity.

Author information
  • Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, RussiaD. A. Nazimov, O. V. Klimov, A. V. Saiko & A. S. Noskov
References
  1. Sattler, J.J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, no. 20, pp. 10613–10653. https://doi.org/10.1021/cr5002436
  2. Sanfilippo, D., Catal. Today, 2011, vol. 178, no. 1, pp. 142–150. https://doi.org/10.1016/j.cattod.2011.07.013
  3. Busca, G., Adv. Catal., 2014, vol. 57, pp. 319–404. https://doi.org/10.1016/B978-0-12-800127-1.00003-5
  4. Nazimov, D.A., Klimov, O.V., Danilova, I.G., Trukhan, S.N., Saiko, A.V., Cherepanova, S.V., Chesalov, Y.A., Martyanov, O.N., and Noskov, A.S., J. Catal., 2020, vol. 391, pp. 35–47. https://doi.org/10.1016/j.jcat.2020.08.006
  5. Gorriz, O.F., Cortes Corberan, V., and Fierro, J.L.G., Ind. Eng. Chem. Res., 1992, vol. 31, no. 12, pp. 2670–2674. https://doi.org/10.1021/ie00012a007
  6. Rodemerck, U., Kondratenko, E.V., Otroshchenko, T., and Linke, D., Chem. Commun., 2016, vol. 52, no. 82, pp. 12222–12225. https://doi.org/10.1039/C6CC06442F
  7. Rombi, E., Cutrufello, M.G., Solinas, V., Rossi, S. De, Ferraris, G., and Pistone, A., Appl. Catal. A, 2003, vol. 251, no. 2, pp. 255–266. https://doi.org/10.1016/S0926-860X(03)00308-9
  8. Cavani, F., Koutyrev, M., Trifirò, F., Bartolini, A., Ghisletti, D., Iezzi, R., Santucci, A., and Del Piero, G., J. Catal., 1996, vol. 158, no. 1, pp. 236–250. https://doi.org/10.1006/jcat.1996.0023
  9. Nazimov, D.A., Klimov, O.V., Saiko, A.V., Trukhan, S.N., Glazneva, T.S., Prosvirin, I.P., Cherepanova, S.V., and Noskov, A.S., Catal. Today, 2021, vol. 375, pp. 401–409. https://doi.org/10.1016/j.cattod.2020.03.005
  10. Bocanegra, S.A., Castro, A.A., Guerrero-Ruíz, A., Scelza, O.A., and De Miguel, S.R., Chem. Eng. J., 2006, vol. 118, no. 3, pp. 161–166. https://doi.org/10.1016/j.cej.2006.02.004
  11. Wang, G., Song, N., Lu, K., Wang, W., Bing, L., Zhang, Q., Fu, H., Wang, F., and Han, D., Catalysts, 2019, vol. 9, no. 11, p. 968. https://doi.org/10.3390/catal9110968
  12. Masson, J., Bonnier, J.M., Duvigneaud, P.H., and Delmon, B., J. Chem. Soc., Faraday Trans. 1, 1977, vol. 73, pp. 1471–1479. https://doi.org/10.1039/F19777301471
  13. Rombi, E., Gazzoli, D., Cutrufello, M.G., De Rossi, S., and Ferino, I., Appl. Surf. Sci., 2010, vol. 256, no. 17, pp. 5576–5580. https://doi.org/10.1016/j.apsusc.2009.12.151
  14. Patent US 2399678A, Publ. 1946.
  15. Patent US 2419997A, Publ. 1947.
  16. Jóźwiak, W.K. and Dalla Lana, I.G., J. Chem. Soc., Faraday Trans., 1997, vol. 93, no. 15, pp. 2583–2589. https://doi.org/10.1039/a608563f
  17. McDaniel, M.P., J. Catal., 1982, vol. 76, no. 1, pp. 37–47. https://doi.org/10.1016/0021-9517(82)90234-2
  18. Bartholomew, C.H., Appl. Catal. A, 2001, vol. 212, nos. 1–2, pp. 17–60. https://doi.org/10.1016/S0926-860X(00)00843-7
  19. Anderson, P.J. and Morgan, P.L., Trans. Faraday Soc., 1964, vol. 60, pp. 930–937. https://doi.org/10.1039/TF9646000930
  20. Arai, H. and Machida, M., Appl. Catal. A, 1996, vol. 138, no. 2, pp. 161–176. https://doi.org/10.1016/0926-860X(95)00294-4
  21. Fridman, V.Z., Xing, R., and Severance, M., Appl. Catal. A, 2016, vol. 523, pp. 39–53. https://doi.org/10.1016/j.apcata.2016.05.008
  22. Patent US 8680357B1, Publ. 2014.
  23. Airaksinen, S.M.K., Krause, A.O.I., Sainio, J., Lahtinen, J., Chao, K.J., Guerrero-Pérez, M.O., and Bañares, M.A., Phys. Chem. Chem. Phys., 2003, vol. 5, no. 20, pp. 4371–4377. https://doi.org/10.1039/B305802F
  24. Weckhuysen, B.M., Schoonheydt, R.A., Jehng, J.-M., Wachs, I.E., Cho, S.J., Ryoo, R., Kijlstra, S., and Poels, E., J. Chem. Soc., Faraday Trans., 1995, vol. 91, no. 18, pp. 3245–3253. https://doi.org/10.1039/FT9959103245
  25. Kanervo, J.M. and Krause, A.O.I., J. Catal., 2002, vol. 207, no. 1, pp. 57–65. https://doi.org/10.1006/jcat.2002.3531
  26. Weckhuysen, B.M., Ridder, L.M. De, and Schoonheydt, R.A., J. Phys. Chem., 1993, vol. 97, no. 18, pp. 4756–4763. https://doi.org/10.1021/j100120a030
  27. Egorova, S.R., Bekmukhamedov, G.E., and Lamberov, A.A., Kinet. Catal., 2013, vol. 54, no. 1, pp. 49–58. https://doi.org/10.1134/S0023158413010072 
  28. Weckhuysen, B.M. and Schoonheydt, R.A., Catal. Today, 1999, vol. 51, no. 2, pp. 223–232. https://doi.org/10.1016/S0920-5861(99)00047-4
  29. Puurunen, R.L. and Weckhuysen, B.M., J. Catal., 2002, vol. 210, no. 2, pp. 418–430. https://doi.org/10.1006/jcat.2002.3686
  30. Fridman, V.Z. and Xing, R., Appl. Catal. A, 2017, vol. 530, pp. 154–165. https://doi.org/10.1016/j.apcata.2016.11.024
  31. Fridman, V.Z. and Xing, R., Ind. Eng. Chem. Res., 2017, vol. 56, no. 28, pp. 7937–7947. https://doi.org/10.1021/acs.iecr.7b01638
  32. Hakuli, A., Kytökivi, A., Krause, A.O.I., and Suntola, T., J. Catal., 1996, vol. 161, no. 1, pp. 393–400. https://doi.org/10.1006/jcat.1996.0197
  33. De Rossi, S., Ferraris, G., Fremiotti, S., Cimino, A., and Indovina, V., Appl. Catal. A, 1992, vol. 81, no. 1, pp. 113–132. https://doi.org/10.1016/0926-860X(92)80264-D
  34. De Rossi, S., Ferraris, G., Fremiotti, S., Garrone, E., Ghiotti, G., Campa, M.C., and Indovina, V., J. Catal., 1994, vol. 148, no. 1, pp. 36–46. https://doi.org/10.1006/jcat.1994.1183
  35. Hakuli, A., Kytökivi, A., and Krause, A.O.I., Appl. Catal. A, 2000, vol. 190, nos. 1–2, pp. 219–232. https://doi.org/10.1016/S0926-860X(99)00310-5
  36. Weckhuysen, B.M., Ridder, L.M. De, Grobet, P.J., and Schoonheydt, R.A., J. Phys. Chem., 1995, vol. 99, no. 1, pp. 320–326. https://doi.org/10.1021/j100001a048
  37. Matsunaga, Y., Bull. Chem. Soc. Jpn., 1957, vol. 30, no. 8, pp. 868–872. https://doi.org/10.1246/bcsj.30.868
  38. Dumez, F.J. and Froment, G.F., Ind. Eng. Chem. Process Des. Dev., 1976, vol. 15, no. 2, pp. 291–301. https://doi.org/10.1021/i260058a014
  39. Airaksinen, S.M.K., Bañares, M.A., and Krause, A.O.I., J. Catal., 2005, vol. 230, no. 2, pp. 507–513. https://doi.org/10.1016/j.jcat.2005.01.005