Examples



mdbootstrap.com



 
Статья
2017

The Effect of High-Temperature Annealing on the Structural-Phase State of Ultrafine Grain Steel 0.1C–2V–1Ti–Fe


N. A. PopovaN. A. Popova, E. L. NikonenkoE. L. Nikonenko, N. R. SizorenkoN. R. Sizorenko, N. A. KonevaN. A. Koneva
Российский физический журнал
https://doi.org/10.1007/s11182-017-1116-5
Abstract / Full Text

Using transmission electron microscopy and X-ray diffraction analysis, the structural-phase state of steel 0.1C–2V–1Ti–Fe, deformed by the SPD methods and subjected to high-temperature annealing at the temperatures 600 and 700°С, is investigated. The influence of the steady temperature on the grain size, steel phase composition, carbide transformations, carbide particle size and distribution density, carbon distribution, and fine-structure parameters are determined. A special focus is made on the sources of internal stress.

Author information
  • Tomsk State University of Architecture and Building, Tomsk, RussiaN. A. Popova, E. L. Nikonenko, N. R. Sizorenko & N. A. Koneva
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaN. A. Popova
  • National Research Tomsk Polytechnic University, Tomsk, RussiaE. L. Nikonenko
References
  1. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys [in Russian], UrB RAS, Ekaterinburg (2003).
  2. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials [in Russian], IKC Akademkniga, Moscow (2007).
  3. G. A. Malygin, Phys. Solid State, 49, No. 6, 961–982 (2007).
  4. A. A. Mazilkin, V. V. Straumal, S. G. Protasova, et al., J. Mater. Sci., 43, No. 11, 3800–3805 (2008).
  5. V. F. Terentiev, S. V. Dobatkin, D. V. Prosvirnin, et al., Deform. Razrush. Mater., No. 10, 30–38 (2008).
  6. A. A. Zakirova, R. G. Zaripova, and V. I. Semenov, Bulletin of USATU, 11, No. 2, 123–130 (2008).
  7. R. A. Andrievskii and A. M. Glaezer, Usp. Fiz. Nauk, 179,No.4, 337–358 (2009).
  8. A. A. Zakirova and R. G. Zaripova, Deform. Razrush. Mater., No. 7, 10–15 (2010).
  9. E. G. Astafurova, G. G. Zakharova, E. V. Naidenkin, et al., J. Metals and Metallogr., 110, No. 3, 260–268 (2010).
  10. E. G. Astafurova, G. G. Zakharova, E. V. Naidenkin, et al., Zh. Fizich. Mezomekh., 13, No. 4, 91–101 (2010).
  11. G. G. Zakharova, E. G. Astafurova, M. S. Tukeeva, et al., Russ. Phys. J., 54, No. 4, 423–429 (2011).
  12. A. M. Glaezer and N. A. Shurygina, Amorphous-Nanocrystalline Alloys [in Russian], Fizmatizdat, Moscow (2013).
  13. E. G. Astafurova, G. G. Mayer, M. S. Tukeeva, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 12/2, 76–81 (2013).
  14. É. V. Kozlov, N. A. Popova, E. L. Nikonenko, et. al., Deform. Razrush. Mater., No. 3, 10–14 (2016).
  15. É. V. Kozlov, A. M. Glaezer, N. A. Koneva, et al., Fundamental Principles of Deformation of Nanostructured Materials (Ed. A. M. Glaezer) [in Russian], Fizmatlit, Moscow (2016).
  16. É. V. Kozlov, N. A. Koneva, N. A. Popova, et al., New-Generation Multifunctional Structural Materials (Ed. V. E. Gromov)[in Russian], Centr. SibSU Publ., Novokuznetsk (2015).
  17. É. V. Kozlov, N. A. Koneva, and N. A. Popova, Russian Metallurgy (Metally), No. 10, 867–873 (2010).
  18. É. V. Kozlov, N. A. Koneva, and N. A. Popova, Zh. Fizich. Mezomekh., 12, No. 4, 93–103 (2009).
  19. É. V. Kozlov, L. I. Trishkina, N. A. Popova, and N. A. Koneva, Zh. Fizich. Mezomekh., 14, No. 3, 95–110 (2011).
  20. N. A. Koneva, N. A. Popova, and É. V. Kozlov, Perspekt. Mater., No. 12, 238–243 (2011). (Inorganic Materials).
  21. É. V. Kozlov, N. A. Koneva, and N. A. Popova, Lettr. Mater., No. 3, 113–117 (2013).
  22. É. V. Kozlov, D. V. Lychagin, N. A. Popova, et al., The Physics of Strength of Heterogeneous Materials; Coll. scientific works [in Russian], Ioffe PTI, Leningrad (1988).