Synthesis and Investigation of Dilithium Salts of Polyhydroquinones with Azomethine Groups as the Cathodes for Lithium Organic Batteries

A. F. ShestakovA. F. Shestakov, I. K. YakushchenkoI. K. Yakushchenko, A. A. SlesarenkoA. A. Slesarenko, P. A. TroshinP. A. Troshin, O. V. YarmolenkoO. V. Yarmolenko
Российский электрохимический журнал
Abstract / Full Text

The prototypes of lithium batteries with organic electrode materials based on two lithium salts of polyhydroquionones containing azomethine groups and, for a comparison, materials based on the original Schiff base are developed and characterized. Poly[3,6-bis(iminomethylphenylene-1,2-diol)dilithium] and poly[3-(iminomethyl)-6-methylimino-N-(1-phenyl-4-diyl)benzene-1,2-dioldilithium] are synthesized and studied for the first time. For these structures, quantum chemical simulations are carried out for calculating the energy of the addition of lithium atoms which can proceed either to the nitrogen atom of the azomethine group or to the oxygen atom of the carbonyl group. It is shown experimentally that the best capacity and stability characteristics are demonstrated by the polymer poly[3,6-bis(iminomethylphenylene-1,2-diol)dilithium with the initial capacity of 140 mA h/g in the cycling interval of 0.7–4.1 V vs. Li+/Li, which makes it a promising cathodic material for lithium batteries.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Science, 142432, Chernogolovka, Moscow oblast, RussiaA. F. Shestakov, I. K. Yakushchenko, A. A. Slesarenko, P. A. Troshin & O. V. Yarmolenko
  • Moscow State University, 119991, Moscow, RussiaA. F. Shestakov
  • Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 121205, Moscow, RussiaP. A. Troshin
  1. Akitt, J.W., Kaye, F.W., Lee, B.E., and North, A.M., Conjugated polymeric Schiff bases. Thermally stable polymers with low electrical resistivity, Makromol. Chem., 1962, vol. 56, p. 195.
  2. Li, X., Jiao, Y., and Li, S. The syntheses, properties and application of new conducting polymers, Eur. Polym. J., 1991, vol. 27, p. 1345.
  3. Popov, Yu.A., Davydov, B.E., Kubasova, N.A., Kren-tsel’, B.A., and Konstantinov, I.I., Synthesis and properties of polymeric Schiff bases, Vysokomol.Soedinen., 1965, vol. 7, p. 835.
  4. Cianga, I. and Ivanoiu, M., Synthesis of poly(Schiff-base)s by organometallic processes, Eur. Polym. J., 2006, vol. 42, p. 1922.
  5. Kugler, T., Giguere, J.-B., Bourcet, F., and Toner, J., WO Patent 2018162890, 2018.
  6. Kugler, T., Giguere, J.-B., Toner, J., and Bourcet, F., GB Patent 2560348, 2018.
  7. Karushev, M.P., Belous, S.A., Lavrova, T.S., Chepurnaya, I.A., Timonov, A.M., and Kogan, S., WO Patent 2016044857, 2016.
  8. Karushev, M.P., Belous, S.A., Lavrova, T.S., Chepurnaya, I.A., Timonov, A.M., and Kogan, S., WO Patent 2016028589, 2016.
  9. Cheng, H., Sun, Y., Sun, Y., Pan, Q., and Sun, H., CN Patent 105261758, 2016.
  10. Ye, H., Jiang, F., Li, H., Xu, Z., Yin, J., and Zhu, H., Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries, Electrochim. Acta, 2017, vol. 253, p. 319.
  11. Sun, Y., Sun, Y., Pan, Q., Li, G., Han, B., Zeng, D., Zhang, Y., and Cheng, H., A hyperbranched conjugated Schiff base polymer network: a potential negative electrode for flexible thin film Batteries, Chem. Commun., 2016, vol. 52, p. 3000.
  12. Zhuang, X., Zhang, F., Wu, D., and Feng, X., Graphene coupled Schiff-base porous polymers: Towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity, Adv. Mater., 2014, vol. 26, p. 3081.
  13. Fernandez, N., Sanchez-Fontecoba, P., Castillo-Martinez, E., Carretero-Gonzalez, J., Rojo, T., and Armand, M., Polymeric redox-active electrodes for sodium-ion batteries, ChemSusChem, 2018, vol. 11, p. 311.
  14. Daigle, J.-C., Asakawa, Y., Hovington, P., Zaghib, K., Schiff base as additive for preventing gas evolution in Li4Ti5O12-based lithium-ion battery, ACS Appl. Mater. Interfaces, 2017, vol. 9(47), p. 41371.
  15. Levchenko, N.F., Afanasiadi, L.Sh., and Bezuglyi, V.D., The influence of the nature of the radicals associated with the azomethine group on its polarographic activity, Zh. Obshch. Khim.,1967, vol. 37, p. 666.
  16. Kitaev, Yu.P. and Troepol′skaya, T.V., Polarographic reduction of azomethine compounds, in Progress in Electrochemistry of Organic Compounds. Vol. 1, Frumkin, A.N. and Ershler, A.B., Eds., London: Plenum, 1971, p. 43.
  17. Lopez-Herraiz, M., Castillo-Martınez, E., Carretero-Gonzalez, J., Carrasco, J., Rojo, T., and Armand, M., Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers, Energy Environ. Sci., 2015, vol. 8, p. 3233.
  18. Xiao, Z., Han, J., Xiao, J., Song, Q., Zhang, X., Kong, D., Yang, Q.-H., and Zhi, L., A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance, Nanoscale, 2018, vol. 10, p. 10351.
  19. Castillo-Martinez, E., Carretero-Gonzalez, J., and Armand, M., Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries, Angew. Chem., 2014, vol. 53, p. 5341.
  20. Manecke, G., Wille, W.E., and Kossmehl, G., Preparation and properties of monomeric and polymeric Schiff bases derived from salicylaldehyde and 2,5-dihydroxyterephthalaldehyde. II. Electrical conductivity, Makromol. Chem., 1972, vol. 160, p. 111.
  21. Mo, Y.-P., Liu, X.-H., Sun, B., Yan, H.-J., Wang, D., and Wan, L.-J., The intramolecular H-bonding effect on the growth and stability of Schiff-base surface covalent organic frameworks, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 539.
  22. Jiang, J., Dong, R.Y., and MacLachlan, M.J., Lyotropic liquid crystallinity in mixed-tautomer Schiff-base macrocycles, Chem. Commun., 2015, vol. 51, p. 16205.
  23. Dunn, T.J., Ramogida, C.F., Simmonds, C., Paterson, A., Wong, E.W.Y., Chiang, L., Shimazaki, Y., and Storr, T., Non-innocent ligand behavior of a bimetallic Ni Schiff-base Complex containing a bridging catecholate, Inorg. Chem., 2011, vol. 50, p. 6746.
  24. Akine, S., Sunaga, S., and Nabeshima, T., Multistep oligometal complexation of the macrocyclic tris(N2O2) hexaoxime ligand, Chem. – Eur. J., 2011, vol. 17, p. 6853.
  25. Feltham, H.L.C., Clerac, R., Powell, A.K., and Brooker, S., A tetranuclear, macrocyclic 3d–4f complex showing single-molecule magnet behavior, Inorg. Chem., 2011, vol. 50, p. 4232.
  26. Yamamura, M., Sasaki., Kyotani, M., Orita, H., and Nabeshima, T., Self-assembled nanostructures of tailored multi-metal complexes and morphology control by counter-anion exchange, Chem. – Eur. J., 2010, vol. 16, p. 10638.
  27. Jiang, J. and MacLachlan, M.J., Unsymmetrical triangular Schiff base macrocycles with cone conformations, Org. Lett., 2010, vol. 12, p. 1020.
  28. Gallant, A.J., Yun, M., Sauer, M., Yeung, C.S., and MacLachlan, M.J., Tautomerization in naphthalenediimines: A keto-enamine Schiff base macrocycle, Org. Lett., 2005, vol. 7, p. 4827.
  29. Gallant, A.J. and MacLachlan, M.J., Ion-induced tubular assembly of conjugated Schiff-basemacrocycles, Angew. Chem. Int. Ed., 2003, vol. 42, p. 5307.
  30. Akine, S., Taniguchi, T., and Nabeshima, T., Helical metallohost—guest complexes, J. Am. Chem. Soc., 2006, vol. 128, p.15765.
  31. Perdew, P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, vol. 77, p. 3865.
  32. Stevens, W.J., Basch, H., and Krauss, M.J., Valence basis set for transition metals (available Li–Rn) with corresponding ECPs, J. Chem. Phys., 1984, vol. 81, p. 6026.
  33. Laikov, D.N., Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets, Chem. Phys. Lett., 1997, vol. 281, p. 151.