Examples



mdbootstrap.com



 
Статья
2021

Influence of Geometric Tooth Shape Parameters of Labyrinth Seals on the Flow Law and the Algorithm for Designing Straight Grate Teeth


Bo ZhangBo Zhang, Jingjing LiJingjing Li, Wenkai LiWenkai Li, Honghu JiHonghu Ji
Российский физический журнал
https://doi.org/10.1007/s11182-021-02432-0
Abstract / Full Text

In view of the fact that the traditional method does not summarize flow rules through straight labyrinth seals, there is no rule to summarize the sealing effects of the labyrinth seals with different specifications. Therefore, it is proposed to study the influence of the geometric tooth profile parameters on the flow law and the algorithm for designing the labyrinth seals. According to the geometric tooth profile parameters, 22 tooth profile test models of straight tooth grating have been designed. Experimental results have shown that the flow coefficient increases with the seal clearance and the tooth tip thickness. It is proportional to the tooth height, pitch, and the number of teeth. When compressed air passes through the labyrinth seals, to improve the sealing effect, attention should be focused on the design of the first and last teeth. This provides a favorable basis for the study of the flow law in the labyrinth.

Author information
  • Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing, ChinaBo Zhang, Jingjing Li & Honghu Ji
  • Jiangsu Key Laboratory of Green Process Equipment, Changzhou, ChinaWenkai Li
References
  1. R. S. Zhu, Y. G. Lu, et al., At. Energy Sci. Tech., 50, No. 7, 1216–1223 (2016).
  2. H. L. Qiao, J. Y. Yu, and C. Wang, J. China Acad. Electron. Inf. Tech., 11, No. 6, 574–576 (2016).
  3. A. Soni and S. N. Singh, Sol. Energy, 148, 149–156 (2017).
  4. T. D. Melo, J. N. V. Goulart, C. T. M. Anflor, et al., Eur. J. Mech. B Fluids, 62, No. 3–4, 130–138 (2017).
  5. H. Ye, X. S. Ge, S. Y. Zhuang, et al., Acta Energ. Sol. Sin., 24, No. 1, 27–31(2003).
  6. B. Zhang, J. J. Li, W. K. Li, et al., J. Comput. Theor. Nanosci., 14, No. 3, 1528–1534 (2017).
  7. M. J. Avanaki, and A. A. A. Jeddi, J. Text. Inst. Proc. Abstr., 108, No. 3, 418–427 (2016).
  8. M. K. Guo, Q. H. Wang, J. Z. Yang, et al., J. Yangtze Univ. (Nat. Sci. Ed.), 12, No. 32, 55–60 (2015).
  9. F. Tong, L. Zhang, R. Hua, et al., J. Propuls. Tech., 36, No. 1, 119–123 (2015).
  10. Z. H. Yang, H. J. Gong, Y. J. Li, et al., China Sciencepaper, 11, No. 5, 527–532 (2016).
  11. L. Cui, G. Q. Li, G. Han, et al., Gas Turb. Technol., 30, No. 1, 41–47 (2017).
  12. X. Fu, Y. H. Cao, Y. B. Zhang, et al., Acta Armamentarii, 38, No. 4, 824–832 (2017).
  13. B. Zhang, H. H. Ji, F. Q. Du, et al., J. Propuls. Technol., 37, No. 2, 304–310 (2016).
  14. H. F. Cui, S. N. Liao, and Q. W. Gao, Intern. Combust. Eng., 34, No. 6, 1–4 (2016).
  15. H. G. Wang, and C. J. Su, J. Netshape Forming Engineering., 25, No. 1, 66–70 (2017).
  16. F. Yang, H. S. Zhu, S. Q. Jiao, et al., West-China Explor. Eng., 28, No. 5, 47–49 (2016).
  17. L. Teng, Y. X. Li, M. Liu, et al., Oil Gas Storage Transp., 35, No. 11, 1179–1186 (2016).
  18. Z. Lei, X. Z. Kong, G. W. Liu, et al., J. Propuls. Technol., 38, No. 11, 2588–2596 (2017).
  19. Z. K. Wang, Z. X Zeng, Y. H. Xu, et al., J. Propuls. Technol., 36, No. 3, 405–412 (2015).
  20. F. Wu, K. L. Lu, and Y. Xiao, Fire Sci. Technol., 34, No. 7, 863–865 (2015).
  21. W. Gao, and W. Wang, Colloq. Math., 147, No. 1, 55–65 (2017).
  22. L. Kang, H. L. Du, X. Du, et al., Desalin. Water Treat., 44, No. 25, 296–301 (2018).
  23. D. Li, L. Wang, W. Peng, et al., Polymer Compos., 38, No. 9, 2009–2015 (2017).
  24. A. M. Simoes, J. Interdiscip. Math., 21, No. 3, 645–667 (2018).
  25. M. A. Styugin, A. A. Kytmanov, and T. N. Yamskikh, J. Discrete Math. Sci. Cryptogr., 21, No. 3, 679–694 (2018).
  26. W. Gao and W. F. Wang, J. Differ. Equ. Appl., 23, Nos. 1–2, Special Issue, 100–109 (2017).
  27. W. Gao and W. Wang, Colloq. Math., 149, No. 2, 291–298 (2017).
  28. M. I. García-Planas and T. Klymchuk, Appl. Math. Nonlinear Sci., 3, No. 1, 97–104 (2018).
  29. F. Dusunceli, Appl. Math. Nonlinear Sci., 4, No. 2, 365–370 (2019).
  30. W. Zhao, T. Shi, and L. Wang, Appl. Math. Nonlinear Sci., 5, No. 1, 71–84 (2020).
  31. H. Harraga and M. Yebdri, Appl. Math. Nonlinear Sci., 3, No. 1, 127–150 (2018).
  32. A. M. Nasir, S. M. Husnine, T. Ak, et al., Math. Meth. Appl. Sci., 41, No. 16, 6611–6624 (2018).
  33. V. Fabian Morales-Delgado, J. Francisco Gomez-Aguilar, and A. Atangana, Therm. Sci., 23, No. 2B, 1279– 1287 (2019).