Voltammetric Sensors and Sensor System Based on Gold Electrodes Modified with Polyarylenephthalides for Cysteine Recognition

Yu. A. Yarkaeva Yu. A. Yarkaeva , D. I. Dubrovskii D. I. Dubrovskii , R. A. Zil’berg R. A. Zil’berg , V. N. Maistrenko V. N. Maistrenko
Российский электрохимический журнал
Abstract / Full Text

Voltammetric sensors and a sensor system based on gold electrodes modified with polyarylenephthalides (chlorinated polyphthalidylidene fluorene and polyphthalidylidene diphenyl and brominated polyphthalidylidene diphenyl) for the identification of cysteine are developed. The surface morphology of the modified electrodes and electrochemical and analytical characteristics of the sensors are studied, the conditions for the electrochemical oxidation of cysteine and the production of an analytical signal are optimized. The proposed sensors and sensor system, with chemometric processing of response signals, allows recognizing manufacturers of cysteine-containing pharmaceutical preparations. The use of the voltammetric sensor system can significantly increase the percentage of correctly recognized samples in comparison with the registration of voltammograms on separate electrodes.

Author information
  • Bashkortostan State University, 450076, Ufa, Bashkortostan, Russia

    Yu. A. Yarkaeva, D. I. Dubrovskii, R. A. Zil’berg & V. N. Maistrenko

  1. Budnikov, H.K., Evtyugin, G.A., and Maistrenko, V.N., Modified Electrodes for Voltammetry in Chemistry of Biology and Medicine (in Russian), Moscow: BINOM, Laboratory of Knowledge, 2010.
  2. Maistrenko, V.N., Evtyugin, G.A., and Zil’berg, R.A., Enantioselective Voltammetric Sensors (in Russian), Ufa: Bash. Gos. Univ., 2018.
  3. Maistrenko, V.N., Evtyugin, G.A., and Sidelnikov, A.V., Voltammetric Electronic Language, in: Problems of Analytical Chemistry, vol. 14, Chemical Sensors, Vlasov, Yu.G., Ed., Moscow: Nauka, 2011.
  4. Rudnitskaya, A., Kirsanov, D., Blinova, Y., Legin, E., Seleznev, B., Clapham, D., Ives, R.S., Saunders, K.A., and Legin, A., Assessment of bitter taste of pharmaceuticals with multisensor system employing 3 way PLS regression, Anal. Chim. Acta, 2013, vol. 770, p. 45.
  5. Choi, D.H., Kim, N.A., Nam, T.S., Lee, S., and Jeong, S.H., Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system, Drug Dev. Ind. Pharm., 2014, vol. 40, p. 308.
  6. Sidel’nikov, A.V., Zil’berg, R.A., Yarkaeva, Yu.A., Maistrenko, V.N., and Kraikin, V.A., Voltammetric identification of antiarrhythmic medicines using principal component analysis, J. Analyt. Chem. 2015, vol. 70, no. 10, p. 1261.
  7. Zil’berg, R.A., Yarkaeva, Yu.A., Maksyutova, E.I., Sidel’nikov, A.V., and Maistrenko, V.N., Voltammetric identification of insulin and its analogues using glassy carbon electrodes modified with polyarylenephthalides, J. Analyt. Chem., 2017, vol. 72, no. 4, p. 402.
  8. Legin, A., Rudnitskaya, A., Clapham, D., Seleznev, B., Lord, K., and Vlasov, Y., Electronic tongue for pharmaceutical analytics: quantification of tastes and masking effects, Anal. Bioanal. Chem., 2004, vol. 380, p. 36.
  9. Ivanov, A.E. and Zubov, V.P., Smart polymers as surface modifiers for bioanalyticaldevices and biomaterials: theory and practice, Russ. Chem. Rev., 2016, vol. 85, no. 6, p. 565.
  10. Arnaboldi, S., Benincori, T., Cirilli, R., Kutner, W., Magni, M., Mussini, P.R., Noworytad, K., and Sannicolo, F. Inherently chiral electrodes: the tool for chiral voltammetry, Chem. Sci., 2015, vol. 6, p. 1706.
  11. Sannicolo, F., Arnaboldi, S., Benincori, T., Bonometti, V., Cirilli, R., Dunsch, L., Kutner, W., Longhi, G., Mussini, P.R., Panigati, M., Pierini, M., and Rizzo, S., Potential-driven chirality manifestations and impressive enantioselectivity by inherently chiral electroactive organic films, Angew. Chem. Int. Ed., 2014, vol. 53, p. 2623.
  12. Zil’berg, R.A., Yarkaeva, Yu.A., Sidel’nikov, A.V., Maistrenko, V.N., Kraikin, V.A., and Gileva, N.G., Voltammetric determination of bisoprolol on a glassy carbon electrode modified by poly(arylenephthalide), J. Analyt. Chem., 2016, vol. 71, no. 9, p. 926.
  13. Meister, A., Biochemistry of Aminoacids (in Russian), Moscow: Izd. Inostr. Lit., 1961.
  14. Lawrence, N.S., Davis, J., and Compton, R., Electrochemical detection of thiols in biological media, Talanta, 2001, vol. 53, no. 5, p. 1089.
  15. White, P.C., Lawrence, N.S., Davis, J., and Compton, R., Electrochemical determination of thiols: a perspective, Electroanalysis, 2002, vol. 14, no. 2, p. 89.
  16. Kannan, P. and John, S.A., Ultrasensitive detection of L-cysteine using gold-5-amino-2-mercapto-1,3,4-thiadiazole core-shell nanoparticles film modified electrode, Biosensors Bioelectronics, 2011, vol. 30, p. 276.
  17. Abbas, M.N., Saeed, A.A., Singh, B., Abdellatef A., Radowan, A.A., and Dempsey, F., Cysteine sensor based on gold nanoparticles-iron phthalocyanine modified graphite paste electrode, Anal Methods, 2012, vol. 7, no. 5, p. 2529.
  18. Liu, X., Luo, L., Ding, Y., Kang, Z., and Ye, D., Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode, Bioelectrochemistry, 2012, vol. 86, p. 38.
  19. Silva, F.A.S., Silva, M.G.A., Lima, P.R., Meneghetti, M.R., Kubota, L.T., and Goulart, M.O.F., A very low potential electrochemical detectionof L-cysteinebased on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods, Biosensors and Bioelectronics, 2013, vol. 50, p. 202.
  20. Devasenathipathy, R., Karuppiah, C., Chen, S.-M., Mani, V., Vasantha, V.S., and Ramaraj, S., Highly selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin, Microchim. Acta, 2014, vol. 182, p. 727.
  21. Taei, M., Hasanpour, F., Salavati, H., Banitaba, S.H., and Kazemi, F., Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly-4-(p-tolyldiazenyl)benzene-1,2,3-triol film modified glassy carbon electrode, Mater. Sci. Eng. C, 2016, vol. 59, p. 120.
  22. Kannan, A. and Sevvel, R., Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitivedetection of L-cysteine, Mater. Sci. Eng. C, 2017, vol. 78, p. 513.
  23. Liu, L.-P., Yin, Z.-J., and Yang, Z.-S., A L-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode, 2010, vol. 79, p. 84.
  24. Pandey, P.C., Pandey, A.K., and Chauhan, D.S., Nanocomposite of Prussian blue based sensor for L‑cysteine: synergetic effect of nanostructured gold and palladium on electrocatalysis, Electrochim. Acta, 2012, vol. 74, p. 23.
  25. Murugavelu, M. and Karthikeyan, B., Study of Ag–Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine, Superlattices Microstructures, 2014, vol. 75, p. 916.
  26. Valera, D., Espinoza-Montero, P.J., Alvaradoa, J., Carrerac, P., Bonillad, P., Cumbale, L., and Fernández, L., Development and evaluation of a glassy carbon electrode modified with silver and mercury nanoparticles for quantification of cysteine rich peptides, Sensors Actuators: B Chemical, 2017, vol. 253, p. 1170.
  27. Yusoff, N., Rameshkumar, P., Noor, A.M., and Huang, N.M., Amperometric determination of L-cysteine using a glassy carbon electrode modified with palladium nanoparticles grown on reduced graphene oxide in a Nafion matrix, Microchim. Acta, 2018, vol. 185. https://doi.org/10.1007/s00604-018-2782-x
  28. Amiri, M., Salavati-Niasari, M., and Akbari, A., A magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol-gel method for electrocatalytic oxidation and determination of L-cysteine, Microchim. Acta, 2017, vol. 184, p. 825.
  29. Hernández-Ibáñeza, N., Sanjuána, I., Montiela, M.A., Fosterc, C.W., Banksc, C.E., and Iniesta, J., L-cysteine determination in embryo cell culture media using Co(II)-phthalocyanine modified disposable screen-printed electrodes, J. Electroanal. Chem., 2016, vol. 780, p. 303.
  30. Cao, F., Dong, Q., Li, C., Kwak, D., Huang, Y., Song, D., and Lei, Y., Sensitive and selective electrochemical determination of L-cysteine based on cerium oxide nanofibers modified screen printed carbon electrode, Electroanalysis, 2018, vol. 30, p.1133.
  31. Shaidarova, L.G., Ziganshina, S.A., Gedmina, A.V., Chelnokova, I.A., and Budnikov, G.K., Electrochemical behavior and voltammetric determination of cysteine and cystine at carbon paste electrodes modified with metal phthalocyanines, J. Analyt. Chem., 2011, vol. 66, p. 633.
  32. Premlatha, S., Selvarani, K., and Bapu, G.N.K.R., Facile electrodeposition of hierarchical Co-Gd2O3 nanocomposites for highly selective and sensitive electrochemical sensing of L-cysteine, Chemistry Select, 2018, vol. 3, p. 2665.
  33. Zhou, H., Ran, G., Masson, J.-F., Wang, C., Zhao, Y., and Song, Q., Rational design of magnetic micro-nanoelectrodes for recognition and ultrasensitive quantification of cysteine enantiomers, Anal. Chem., 2018. https://doi.org/10.1021/acs.analchem.7b05006
  34. Li, H., Ye, L., Wang, Y., and Xie, C., A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine, Microchim. Acta, 2018, vol. 185. https://doi.org/10.1007/s00604-017-2578-4
  35. Wang, X.J., Zhang, L.L., Miao, L.X., Kan, M.X., Kong, L.L., and Zhang, H.M., Oxidation and detection of L-cysteine using a modified Au/Nafion/glass carbon electrode, Sci. China Chem., 2011, vol. 54, no. 3, p. 521.
  36. Zhang, J., Tan, W., Tao, Y., Deng, L., Qin,Y., and Kong, Y., A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers, Electrochem. Commun., 2018, vol. 86, p. 57.
  37. Aswini, K.K., Vinu Mohan, A.M., and Biju, V.M., Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode, Materials Sci. Engineering C, 2014, vol. 37, p. 321.
  38. Gu, J., Dai, H., Kong, Y., Tao, Y., Chu, H., and Tong, Z., Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles, Synthetic Metals, 2016, vol. 222, p. 137.
  39. Yang, S., Zheng,Y., Zhang, X., Ding, S., and Li, L., Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine Wenling, J. Solid State Electrochem., 2016, vol. 20, p. 2037.
  40. Kazemi, S., Karimi-Maleh, H., Hosseinzadeh, R., and Faraji, F., Selective and sensitive voltammetric sensor based on modified multiwall carbon nanotubes paste electrode for simultaneous determination of L-cysteine and folic acid, Ionics, 2013, vol. 19, p. 933.
  41. Benvidi, A., Ansaripour, M.M., Rajabzadeh, N., Hamid R. Zare, H.R., and Mirjalili, B.-B.F., Developing a nanostructure electrochemical sensor for simultaneous determination of cysteine and tryptophan, Anal. Methods, 2015, vol. 7, p. 3920.
  42. Ziyatdinova, G., Kozlova, E., and Budnikov, H., Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of L-cysteine, Electrochim. Acta, 2018, vol. 270, p. 369.
  43. Hooshmand, S. and Es’haghi, Z., Simultaneous quantification of arginine, alanine, methionine and cysteine amino acids in supplements using a novel bioelectro-nanosensor based on CdSe quantum dot/modified carbon nanotube hollow fiber pencil graphite electrode via Taguchi method, J. Pharmaceut. Biomed. Anal., 2017, vol. 147, p. 226.
  44. Shadjou, N., Hasanzadeh, M., Talebi, F., and Marjani, A.P., Graphene quantum dot functionalized by betacyclodextrin: a novel nanocomposite toward amplification of L-cysteine electro-oxidation signals, Nanocomposites, 2016, vol. 2, p. 18.
  45. Xu, H., Li, C., Song, D., Xu, X., Zhao,Y., Liu, X., and Su, Z., Amperometric L-cysteine sensor using a gold electrode modified with thiolated catechol, Electroanalysis, 2017, vol. 29, p. 2410.
  46. Salazkin, S.N., Shaposhnikova, V.V., Machulenko, L.N., Gileva, N.G., Kraikin, V.A., and Lachinov, A.N., Synthesis of polyarylenephthalides prospective as smart polymers, Polym. Sci. A, 2008, vol. 50, p. 243.
  47. Lasia, A., Electrochemical Impedance Spectroscopy and Its Applications, in: Modern Aspects of Electrochemistry, vol. 32, Conway, B.E., Bockris, J.O’M., and White, R.E., Eds., New York: Kluwer Acad., 2002, p. 143.
  48. Vakulin, I.V., Bugaets, D.V., and Zilberg, R.A., Calculation of standard RedOx potentials by the semi-empirical methods AM1, PM7 and RM1 on wide set of organic compounds. Best scheme and accuracy, Butlerov Commun., 2017, vol. 52, no. 11, p. 53.]
  49. Budnikov, H.K., Maistrenko, V.N., and Vyaselyov, M.R., Fundamentals of Modern Electrochemical Analysis (in Russian). Moscow: Mir, 2003.
  50. Bard, A.J. and Faulkner, L.R., Electrochemical Methods. Fundamentals and Applications. New York: Wiley, 2004.
  51. Siddiqui, M.R., Alothman, Z.A., and Rahman, N., Analytical techniques in pharmaceutical analysis: a review, Arabian J. Chem., 2017, vol. 10, p. S1409.
  52. Doménech-Carbó, A., De Carvalho, L.M., Martini, M., and Cebrián-Torrejón, G., Voltammetry/amperometric screening of compounds of pharmacological interest, Rev. Anal. Chem., 2014, vol. 33, p. 173.
  53. Esbensen, K.H., Multivariate Analysis—in Practice. Oslo: CAMO Process AS, 2001.
  54. Pomerantsev, A.L., Chemometrics in Excel, New York: Wiley, 2014.