Статья
2020

Impregnation of Pt|YSZ Oxygen Electrodes with Microquantities of Praseodymium Oxide


A. I. Kovrova A. I. Kovrova , V. P. Gorelov V. P. Gorelov , D. A. Osinkin D. A. Osinkin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520060117
Abstract / Full Text

The method of electrochemical impedance is used to study the polarization conductivity of porous platinum electrodes in the Pt|YSZ|Pt cells over the temperature range from 500 to 700°C in air. Electrodes are impregnated with microquantities of praseodymium oxide PrOx (from 10–4 to 0.1 mg/cm2) by the impregnating them with praseodymium nitrate solution, with further thermal treatment: slow heating (50°С/h) up to 850°C. This processing resulted in the formation of the praseodymium oxide nanofilm on the electrolyte surface. The introducing of PrOx, even in an amount of 10–4 mg/cm2, is found to significantly increase the electrode polarization conductivity. Analysis of the electrochemical impedance spectra was performed by DRT (distribution of relaxation times) method, which revealed a change of the rate-determining stage of the electrode process in the concentration range of praseodymium oxide from 1 × 10–3 to 3.3 × 10–3 mg/cm2. The studied electrodes are discussed in terms of the island model of dense-oxide-PrOx-electrodes in which platinum plays the role of the current collector.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

    A. I. Kovrova, V. P. Gorelov & D. A. Osinkin

References
  1. Chen, M., Liu, T., and Lin, Z., Theory for the conductivity of nanoparticle-infiltrated SOFC electrode, ECS Transactions, 2013, vol. 57, p. 2763.
  2. Bertei, A., Pharoah, J.G., Gawel, D.A.W., and Nicolella, C., A particle-based model for effective properties in infiltrated solid oxide fuel cell electrodes, J. Electrochem. Soc., 2014, vol. 161, p. 1243.
  3. Ramos, T., Veltze, S., Sudireddy, B.R., Jordensen, P.S., Theil Kuhn L., and Holtappels, P., Effect of Ru/CGO versus Ni/CGO co-Infiltration on the performance and stability of STN-based SOFCs, Fuel Cells, 2014, vol. 14, p. 1062.
  4. Dan, T., Han, M.-F., and Zheng, Z.-W., Fabrication and performance of La0.6Sr0.4Co0.2Fe0.8O3 – δ infiltrated-yttria-stabilized zirconia cathode on anode-supported solid oxide fuel cell, J. Fuel Cell Sci. Technol., 2015, vol. 12, p. 011001.
  5. Kishimoto, M., Lomberg, M., Ruiz-Trejo, E., and Brandon, N.P., Enhanced triple-phase boundary density in infiltrated electrodes for solid oxide fuel cells demonstrated by high-resolution tomography, J. Power Sources, 2014, vol. 266, p. 291.
  6. Yaroslavtsev, I.Yu., Bronin, D.I., Vdovin, G.K., and Isupova, L.A., Oxide cathodes for electrochemical devices made with the use of a nanostructured composition material, Russ. J. Electrochem., 2012, vol. 48, p. 981.
  7. Hong, W., Liu, Y., Wang, J., and Wang, E., LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2, J. Power Sources, 2013, vol. 241, p. 768.
  8. Ding, X., Zhu, W., Hua, G., Li, J., and Wu, Zh., Enhanced oxygen reduction activity on surface-decorated perovskite La0.6Ni0.4FeO3 cathode for solid oxide fuel, Electrochim. Acta, 2015, vol. 163, p. 204.
  9. Chiba, R., Taguchi, H., Komatsu, T., Orui H., Nozawa, K., and Arai H., High temperature properties of Ce1 – xPrxO2 – δ as an active layer material for SOFC cathodes, Solid State Ionics, 2011, vol. 197, p. 42.
  10. Vshivkova, A.I. and Gorelov, V.P., RF Patent 2543071, 2015.
  11. Vshivkova, A.I. and Gorelov, V.P., Activation of oxygen reaction by praseodymium oxide film on platinum electrode in contact with YSZ electrolyte, Russ. J. Electrochem., 2016, vol. 52, p. 488.
  12. Kovrova, A.I. and Gorelov, V.P., Films of Certain Oxides of Rare-Earth Elements as the Activators of Platinum Electrode on ZrO2 + 10 mol % Y2O3 Electrolyte, Russ. J. Electrochem., 2017, vol. 5, p. 592.
  13. Rutman, D.S., Toropov, Yu.S., Pliner, S.Yu., Neuimin, A.D., and Polezhaev Yu.M., High-refractory Materials from Zirconia (in Russian), Moscow: Metallurgy, 1985.
  14. Vshivkova, A.I., Gorelov, V.P., Kuzmin, A.V., Plaksin, S.V., Pankratov, A.A., and Yaroslavtseva, T.V., Preparation and physicochemical properties of praseodymium oxide films and ceramics, Inorganic Mater., 2015, vol. 51, p. 1168.
  15. Gavrilyuk, A.L., Osinkin, D.A., and Bronin, D.I., The use of Tikhonov regularization method for calculating the distribution Function of relaxation times in impedance spectroscopy, Russ. J. Electrochem., 2017, vol. 53, p. 575.
  16. Tikhonov, A.N. and Arsenin, V.Y., Solution of illposed problems, Amer. Math. Soc., 1979, vol. 1, p. 521.
  17. Kim, J.J., Bishop, S.R., Chen, D., and Tuller, H.L., Defect chemistry of Pr doped ceria thin films investigated by in situ optical and impedance measurement, Chem. Mater., 2017, vol. 29, p. 1999.
  18. Chebotin, V.N. and Perfil’ev, M.V. Electrochemistry of Solid Electrolytes(in Russian), Moscow: Khimiya, 1978.
  19. Okada, S., Miyoshi, Sh., and Yamaguchi, Sh., Rate Determining Step in ORR of PrOx-Based Film Cathodes, ECS Transactions, 2015, vol. 68, p. 987.
  20. Mizusaki, J., Amano, K., Yamauchi, S., and Fueki, K., Electrode reaction at Pt, O2 (g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model, Solid State Ionics, 1987, vol. 22, p. 313.
  21. Mizusaki, J., Amano, K., Yamauchi, S., and Fueki, K., Electrode reaction at Pt, O2 (g)/stabilized zirconia interfaces. Part II: Electrochemical measurements and analysis, Solid State Ionics, 1987, vol. 22, p. 323.
  22. Glumov, M.V., Study of polarization of porous platinum electrode in solid-state cell in oxygen atmosphere, Elektrokhimiya, 1986, vol. 22, no. 2, p. 235.
  23. Kurumchin, E.Kh., Isotope exchange studies of electrochemical systems with solid oxide electrolytes, Ionics, 1998, vol. 4, p. 390.