Статья
2017

The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption Properties


Yu. M. Volfkovich Yu. M. Volfkovich , I. V. Goroncharovskaya I. V. Goroncharovskaya , A. K. Evseev A. K. Evseev , V. E. Sosenkin V. E. Sosenkin , M. M. Goldin M. M. Goldin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517120126
Abstract / Full Text

The electrochemical modification of activated carbons (AC) by a conducting polymer polypyrrole (PPy) has a substantial effect on the AC structure characteristics, electrochemical properties, and adsorption activity with respect to natural substances (by the example of free hemoglobin). Using the method of standard contact porosimetry (SCP), the porous structure and hydrophilic–hydrophobic properties are studied for the activated carbon SKT-6A, the [SKT-6A/PPy/Cl] composite, and individual polypyrrole. The chemistry of the activated carbon surface is studied by the standardized Boehm method. It is shown that the nature of activated carbon and its initial surface substantially affect the character of its interaction with the conducting polymer polypyrrole. The effect of such modification on the AC surface chemistry should be considered in aggregate by taking into account each component of such modification. The increase in the sorption ability of [AC/PPy/Cl] composites with respect to hemoglobin is largely associated with the stronger hydrophilicity of polypyrrole as compared with activated carbons.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    Yu. M. Volfkovich & V. E. Sosenkin

  • Sklifosovsky Research Institute for Emergency Medicine, Moscow, 129090, Russia

    I. V. Goroncharovskaya, A. K. Evseev & M. M. Goldin

References
  1. Bansal, R.C. and Goyal, M., Activated carbon adsorption, Boca Raton: CRC Press, 2005.
  2. Boehm, H.P., Chemical identification of surface groups, in Advances of Catalysis and Related Subjects, vol. 16, New York: Academic Press, 1966, p. 179; translated into Russian.
  3. Chang, C.H., Preparation and characterization of carbon- sulfur surface compounds, Carbon, 1981, vol. 19, p. 175.
  4. Frumkin, A.N., Potentsialy nulevogo zaryada (Potentials of Zero Charge), Moscow: Nauka, 1982.
  5. Dubinin, M.M., Microporous structure of carbon adsorbents. Part I. General characteristic of micro and supermicropores for the slot-like model, Izv. Akad. Nauk SSSR, Ser. Khim., 1979, no. 8, p. 1691.
  6. Volfkovich, Yu.M., Bagotskii, V.S., Sosenkin, V.E., and Shkolnikov, E.I., Methods of standard porosimetry and their possible application in electrochemistry, Elektrokhimiya, 1980, vol. 16, p. 1620.
  7. Volfkovich, Yu.M., Bagotsky, V.S., Sosenkin, V.E., and Blinov, I.A., The standard contact porosimetry, Colloids Surf. A, 2001, vol. 187, p. 349.
  8. Volfkovich, Y.M., Bograchev, D.A., Mikhailin, A.A., and Bagotzky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014, vol. 18, p. 1351.
  9. Afkhami, A. and Conway, B.E., Investigation of removal of Cr(VI), Mo(VI), W(VI), V(IV), and V(V) oxy-ions from industrial waste-waters by adsorption and electrosorption at high-area carbon cloth, J. Colloid Interface Sci., 2002, vol. 251, p. 248.
  10. Ayranci, E. and Conway, B.E., Removal of phenol, phenoxide and chlorophenols from waste-waters by adsorption and electrosorption at high-area carbon felt electrodes, J. Electroanal. Chem., 2001, vol. 513, p. 100.
  11. Volfkovich, Yu. M. and Sosenkin, V.E., Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russ. Chem. Rev., 2012, vol. 81, no. 10, p. 936.
  12. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural properties of porous materials and powders used in different fields of science and technology, London: Springer, 2014.
  13. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., Structural and wetting properties of fuel cell components, J. Power Sources, 2010, vol. 195, p. 5429.
  14. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Liquid intrusion and alternative methods for the characterization of macroporous materials, Pure Appl. Chem., 2011, vol. 84, p. 107.
  15. Goldin, M.M., Volkov, A.G., and Namychkin, D.N., Adsorption of copper, silver, and zinc cations on polarized activated carbons, J. Electrochem. Soc., 2005, vol. 152, p. E167.
  16. Oren, Y., Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 2008, vol. 228, p. 10.
  17. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization. II. On the behavior of CDI cells comprising two activated carbon electrodes, J. Electrochem. Soc., 2009, vol. 156, p. 157.
  18. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.
  19. Volfkovich, Yu.M., Bograchev, D.A., Rychagov, A.Yu., Mikhalin, A.A., and Sosenkin, V.E., Capacitive deionization of aqueous solutions. experiments and modeling of the process in static cell, Proc. Int. Conference “Ion transport in organic and inorganic membranes”, Sochi, 2016, p. 298.
  20. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications, NewYork: Springer Science/Business Media, 1999.
  21. Volfkovich, Y.M. and Serdyuk, T.M., Electrochemical capacitors, Russ. J. Electrochem., 2002, vol. 38, p. 935.
  22. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, Hoboken: John Wiley, 2015, p. 372.
  23. Tarasevich, M.R., Goldin, M.M., Luzhnikov, E.A., and Bogdanovskaya, V.A., Electrochemically controlled hemosorption, Itogi Nauki Tekhn., Ser. Elektrokhimiya., 1990, vol. 31, p. 127.
  24. Luzhnikov, E.A., Goldin, M.M., and Suslova, I.M., Sorbent potential and safety of blood corpuscles, Farmatsiya, 1980, vol. 3, p. 65.
  25. Goldin, M.M., Luzhnikov, E.A., and Suslova, I.M., The effect of electrochemical characteristics of sorbent on the content of blood corpuscles at hemosorption, Elektrokhimiya, 1980, vol. 15, p. 1667.
  26. Goldin, M.M. and Luzhnikov, E.A., On the effect of sorbent potential on the sorption of toxic compounds, Elektrokhimiya, 1979, vol. 15, p. 1419.
  27. Lopukhin, Yu.M. and Molodenkov, M.N., Gemosorbtsiya (Hemosprption), Moscow: Meditsina, 1985.
  28. Sugiyama, M. and Nagatsuma, Y., Method for absorbing free hemoglobin from blood, US Patent 4952322, 1990.
  29. Bakalinskaya, O.N., Koval’, N.M., and Kartel’, N.T., Biospecific adsorbents for removal of free hemoglobin, Efferentnaya Terapiya, 1999, no. 3, p. 33.
  30. Khubutiya, M.Sh., Tsivadze, A.Yu., Garaeva, G.R., Andreev, V.N., and Goldin, M.M., Adsorption of free hemoglobin by electrochemically modified activated carbons. Part 2. Blood plasma, Macroheterocycles, 2012, vol. 5, nos. 4–5, p. 327.
  31. Khubutiya, M.Sh., Goldin, M.M., Stepanov, A.A., Kolesnikov, V.A., and Kruglikov, S.S., The effect of electrochemically polymerized pyrrole on the physicochemical properties and biological activity of carbon materials, Carbon, 2012, vol. 50, p. 1146.
  32. Volfkovich, Y.M., Mikhalin, A.A., and Rychagov, A.Yu., Surface conductivity measurements for porous carbon electrodes, Russ. J. Electrochem., 2003, vol. 49, p. 594.
  33. Rychagov A.Y. and Volfkovich Y.M., Low-reversible charging processes on highly dispersed carbon electrodes, Russ. J. Electrochem., 2009, vol. 45, p. 323.
  34. Khubutiya, M.Sh., Tsivadze, A.Yu., Garaeva, G.R., Andreev, V.N., and Goldin, M.M., Adsorption of free hemoglobin by electrochemically modified activated carbon. Part 1. Aqueous solutions, Macroheterocycles, 2012, vol. 5, p. 321.
  35. Goertzen, S.L., Theriault, K.D., Oickle, A.M., Tarasuk, A.C., and Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon, 2010, vol. 48, p. 1252.
  36. Oickle, A.M., Goertzen, S.L., Hopper, K.R., Abdalla, Y.O., and Andreas, H.A., Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant, Carbon, 2010, vol. 48, p. 3313.
  37. Boehm, H.P., Chemical identification of surface groups, in Advances of Catalysis and Related Subjects, vol. 16, New York: Academic Press, 1966, p. 179.
  38. Harboe, M., A method for determination of hemoglobin in plasma by near-ultraviolet spectrophotometry, Scand. J. Clin. Lab. Invest., 1959, vol. 11, p. 66.
  39. Mukhin, V.M., Tarasov, A.V., and Klushin, V.N., Aktivnye ugli Rossii (Active Carbons of Russia), Moscow: Metallurgiya, 2000.
  40. Electroanalytical Methods. Guide to Experiments and Applications, Scholtz, F., Ed., Heidelberg: Springer, 2002.
  41. Volfkovich, Yu.M., Mikhailin, A.A., Bograchev, D.A., Sosenkin, V.E., and Bagotsky, V.S., Studies of super capacitor carbon electrodes with high pseudocapacitance, in Recent Trend in Electrochemical Science and Technology, Ujjal, K.S., Ed., INTECH Open Access Publisher, 2012, p. 159.
  42. Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, N.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Promising electrode materials for supercapacitors, Electrokhim. Energ., 2012, vol. 12, p. 167.
  43. Zou, W.J., Mo, S.S., Zhou, S.L., Zhou, T.X., Xia, N.N., and Yuan, D.S., Preparation of mesoporous carbon/ polypyrrole composite materials and their supercapacitive properties, J. Electrochem. Sci. Eng., 2011, vol. 1, p. 67.
  44. Pacheco-Catalán, D.E., Smit, M.A., and Morales, E., Characterization of composite mesoporous carbon/ conducting polymer electrodes prepared by chemical oxidation of gas-phase absorbed monomer for electrochemical capacitors, Int. J. Electrochem. Sci., 2011, vol. 6, p. 78.
  45. Münstedt, H., Properties of polypyrroles treated with base and acid, Polymer, 1986, vol. 27, p. 899.
  46. Li, Y. and Qian, R., Studies on the chemical compensation of conducting polypyrrole by NaOH solution, Synth. Met., 1988, vol. 26, p. 139.
  47. Werner, W. and Wegner, G., Electrochemistry of thin polypyrrole films, Makromol. Chem., 1987, vol. 188, p. 1465.
  48. Pei, Q. and Qian, R., Protonation and deprotonation of polypyrrole chain in aqueous solutions, Synth. Met., 1991, vol. 45, p. 35.
  49. Zhang, X. and Bai, Surface electric properties of polypyrrole in aqueous solutions, Langmuir, 2003, vol. 19, p. 10703.
  50. Wegner, G., Wernet, W., Glatzhofer, D.T., Ulanski, J., Krohnke, Ch., and Mohammadi, M., Chemistry and conductivity of some salts of polypyrrole, Synth. Met., 1987, vol. 18, p. 1.
  51. Ansari, R., Polypyrrole conducting electroactive polymers: synthesis and stability studies, J. Clim., 2006, vol. 3, p. 186.
  52. Papadopoulos, S., Jürgens, K.D., and Gros, G., Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction, Biophys. J., 2000, vol. 79, p. 2084.