Examples



mdbootstrap.com



 
Статья
2020

Influence of Carbon and Oxygen Impurities on Migration Velocity of Grain-boundary Triple Junctions in FCC Metals


G. M. PoletaevG. M. Poletaev, I. V. ZoryaI. V. Zorya, R. Yu. RakitinR. Yu. Rakitin, A. S. SemenovA. S. Semenov, M. D. StarostenkovM. D. Starostenkov
Российский физический журнал
https://doi.org/10.1007/s11182-020-01914-x
Abstract / Full Text

Using molecular dynamics simulation, this paper studies the influence of impurity atoms of carbon and oxygen on the migration velocity of triple junctions of grain boundaries created by misorientations about <111> axis in Ni, Ag, Al metals with the face-centered cubic crystal system. It is shown that the addition of impurity atoms of light elements substantially constrains the triple junctions from migration. Carbon atoms tend to create clusters which become effective locks when fixed at the grain boundaries, thereby preventing their migration. Oxygen atoms do not form aggregates, but due to high values of the binding energy between atoms and grain boundaries, they effectively inhibit their migration. Binding energies between carbon and oxygen atoms and grain boundary dislocations are calculated in metals at issue. The obtained results correlate with the dependencies between the migration velocity of the triple junctions and the impurity concentration.

Author information
  • Polzunov Altai State Technical University, Barnaul, RussiaG. M. Poletaev & M. D. Starostenkov
  • Siberian State Industrial University, Novokuznetsk, RussiaI. V. Zorya
  • Altai State University, Barnaul, RussiaR. Yu. Rakitin
  • Polytechnic Institute of Ammosov North-Eastern Federal University, Mirnyi, RussiaA. S. Semenov
References
  1. I. A. Ovid'ko, N.V. Skiba, and A.G. Sheinerman, Mater. Phys. Mech., 8, No. 2, 149–154 (2009).
  2. G. Gottstein, V. Sursaeva, and L. Shvindlerman, INTS, 7, 273–283 (1999).
  3. S. G. Protasova, V. G. Sursaeva, and L. S. Shvindlerman, Phys. Solid State, 45, No. 8, 1471–1474 (2003).
  4. M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, and G. Gottstein, INTS, 7, 307–319 (1999).
  5. M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, and G. Gottstein, Acta Mater., 50, 1405–1420 (2002).
  6. G. Poletaev, I. Zorya, and R. Rakitin, Comput. Mater. Sci., 148, 184–189 (2018).
  7. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, et al., J. Exp. Theor. Phys., 128, No. 1, 88–93 (2019).
  8. G. M. Poletaev, M. D. Starostenkov, I. V. Zorya, et al., Russ. Phys. J., 61, No. 7, 1236–1240 (2018).
  9. H. J. Goldschmidt, Interstitial Alloys, Butterworths, London (1967), 640 p.
  10. L. Pauling, The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca (1960), 664 p.
  11. F. Cleri and V. Rosato, Phys. Rev. B, 48, No. 1, 22–33 (1993).
  12. I. V. Zorya, G. M. Poletaev, and M. D. Starostenkov, Fundamental’nye problemy sovremennogo materialovedeniya, 15, No. 4, 526–532 (2018).
  13. N.A. Kulabukhova, G.M. Poletaev, M.D. Starostenkov, et al., Russ. Phys. J., 54, No. 12, 1394–1400 (2011).
  14. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, and M. D. Starostenkov, Int. J. Mater. Res., 108, No. 10, 785– 790 (2017).
  15. G. M. Poletaev and M. D. Starostenkov, Tech. Phys. Lett., 35, No. 1, 1–4 (2009).
  16. M. Ruda, D. Farkas, and G. Garcia, Comput. Mater. Sci., 45, 550–560 (2009).
  17. P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys., 103, 083504 (2008).
  18. R. G. A. Veiga, H. Goldenstein, M. Perez, and C. S. Becquart, Scripta Mater., 108, 19–22 (2015).
  19. L. E. Kar’kina, I. N. Kar’kin, I. L. Yakovleva, and T. A. Zubkova, Phys. Met. Metallogr., 114, No. 2, 155–161 (2013).
  20. A. Atrens, Scripta Metall., 8, 401–412 (1974).
  21. V. Sursaeva and P. Zieba, Defect Diffus. Forum, 237–240, 578–583 (2005).