Examples



mdbootstrap.com



 
Статья
2021

EPR study of nanostructuring in protic ionic liquids [PriNH3]NO3 and [BuNH3]NO3


O. D. BakulinaO. D. Bakulina, M. Yu. IvanovM. Yu. Ivanov, S. A. Prikhod’koS. A. Prikhod’ko, N. Yu. AdoninN. Yu. Adonin, M. V. FedinM. V. Fedin
Российский химический вестник
https://doi.org/10.1007/s11172-021-3353-6
Abstract / Full Text

Using ionic liquids [PriNH3]NO3 and [BuNH3]NO3 as an example, we demonstrate for the first time the ability of protic ionic liquids to form a heterogeneous nanometer scale structure. The discovered phenomenon is of great fundamental importance and expands the range of objects prone to these anomalies.

Author information
  • International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3a ul. Institutskaya, 630090, Novosibirsk, RussiaO. D. Bakulina, M. Yu. Ivanov & M. V. Fedin
  • Novosibirsk State University, 2 ul. Pirogova, 630090, Novosibirsk, RussiaO. D. Bakulina, M. Yu. Ivanov & M. V. Fedin
  • G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 5 prosp. Akad. Lavrent’eva, 630090, Novosibirsk, RussiaS. A. Prikhod’ko & N. Yu. Adonin
References
  1. P. Wasserscheid, Nature, 2006, 439, 797; DOI: https://doi.org/10.1038/439797a.
  2. M. C. Lin, M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. J. Hwang, H. Dai, Nature, 2015, 520, 325; DOI: https://doi.org/10.1038/nature14340.
  3. W. Lu, A. G. Fadeev, B. Qi, E. Smela, B. R. Mattes, J. Ding, G. M. Spinks, J. Mazurkiewicz, D. Zhou, G. G. Wallace, D. R. MacFarlane, S. A. Forsyth, M. Forsyth, Science, 2002, 297, 983; DOI: https://doi.org/10.1126/science.1072651.
  4. L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke, Nature, 1999, 399, 28; DOI: https://doi.org/10.1038/19887.
  5. P. Wasserscheid, W. Keim, Angew. Chem., Int. Ed., 2000, 39, 3772; DOI: https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5.
  6. S. A. Prikhod’ko, A. Yu. Shabalin, M. M. Shmakov, V. V. Bardin, N. Yu. Adonin, Russ. Chem. Bull., 2020, 69, 17; DOI: https://doi.org/10.1007/s11172-020-2719-5.
  7. V. G. Krasovskiy, G. I. Kapustin, O. B. Gorbatsevich, L. M. Glukhov, E. A. Chernikova, A. A. Koroteev, L. M. Kustov, Russ. Chem. Bull., 2021, 70, 301; DOI: https://doi.org/10.1007/s11172-021-3085-7.
  8. Yu. A. Fadeeva, S. M. Kuzmin, L. E. Shmukler, L. P. Safonova, Russ. Chem. Bull., 2021, 70, 56; DOI: https://doi.org/10.1007/s11172-021-3056-z.
  9. D. R. Macfarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci., 2014, 7, 232; DOI: https://doi.org/10.1039/c3ee42099j.
  10. S. V. Nesterov, O. A. Zakurdaeva, M. A. Kochetkova, I. O. Kuchkina, Russ. Chem. Bull., 2020, 69, 1329; DOI: https://doi.org/10.1007/s11172-020-2906-4.
  11. S. E. Lyubimov, A. A. Zvinchuk, B. Chowdhury, V. A. Davankov, Russ. Chem. Bull., 2020, 69, 1598; DOI: https://doi.org/10.1007/s11172-020-2941-1.
  12. V. G. Krasovskiy, E. A. Chernikova, L. M. Glukhov, G. I. Kapustin, A. A. Koroteev, L. M. Kustov, Russ. Chem. Bull., 2018, 67, 1621; DOI: https://doi.org/10.1007/s11172-018-2268-3.
  13. K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev., 2017, 117, 7132; DOI: https://doi.org/10.1021/acs.chemrev.6b00562.
  14. T. Welton, Chem. Rev., 1999, 99, 2071; DOI: https://doi.org/10.1021/cr980032t.
  15. J. P. Hallett, T. Welton, Chem. Rev., 2011, 111, 3508; DOI: https://doi.org/10.1021/cr1003248.
  16. I. Krossing, J. M. Slattery, C. Daguenet, P. J. Dyson, A. Oleinikova, H. Weingärtner, J. Am. Chem. Soc., 2006, 128, 13427; DOI: https://doi.org/10.1021/ja0619612.
  17. K. Walter, Chem. Rev., 1948, 43, 219.
  18. V. I. Pârvulescu, C. Hardacre, Chem. Rev., 2007, 107, 2615; DOI: https://doi.org/10.1021/cr050948h.
  19. N. P. Tarasova, Yu. V. Smetannikov, A. A. Zanin, Russ. Chem. Rev., 2010, 79, 463; DOI: https://doi.org/10.1070/RC2010v079n06ABEH004152.
  20. T. L. Greaves, C. J. Drummond, Chem. Rev., 2008, 108, 206; DOI: https://doi.org/10.1021/cr068040u.
  21. C. Dai, J. Zhang, C. Huang, Zh. Lei, Chem. Rev., 2017, 117, 6929; DOI: https://doi.org/10.1021/acs.chemrev.7b00030.
  22. K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Chem. Rev., 2017, 117, 6636; DOI: https://doi.org/10.1021/acs.chemrev.6b00776.
  23. D. Belchior, T. Sintra, P. Carvalho, M. Soromenho, J. Esperancsa, S. Ventura, R. Rogers, J. Coutinho, M. Freire, J. Coll. Interf. Sci., 2018, 148, 193842; DOI: https://doi.org/10.1063/1.5012020.
  24. M. A. A. Rocha, C. M. S. S. Neves, M. G. Freire, O. Russina, A. Triolo, J. A. P. Coutinho, L. M. N. B. F. Santos, J. Phys. Chem. B, 2013, 117, 10889; DOI: https://doi.org/10.1021/jp406374a.
  25. H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, M. Watanabe, J. Phys. Chem. B, 2005, 109, 6103; DOI: https://doi.org/10.1021/jp044626d.
  26. A. Triolo, O. Russina, B. Fazio, R. Triolo, E. Di Cola, Chem. Phys. Lett., 2008, 457, 362; DOI: https://doi.org/10.1016/j.cplett.2008.04.027.
  27. E. Binetti, A. Panniello, L. Triggiani, R. Tommasi, A. Agostiano, M. L. Curri, M. Striccoli, J. Phys. Chem. B, 2012, 116, 3512; DOI: https://doi.org/10.1021/jp300517h.
  28. N. Hazrati, M. Abdouss, A. A. Miran Beigi, A. A. Pasban, M. Rezaei, J. Chem. Eng. Data, 2017, 62, 3084; DOI: https://doi.org/10.1021/acs.jced.7b00242.
  29. K. Kim, S. Kim, J. Ind. Eng. Chem., 2015, 26, 136; DOI: https://doi.org/10.1016/j.jiec.2014.11.025.
  30. H. J. Kwon, J. A. Seo, T. Iwahashi, Y. Ouchi, D. Kim, H. K. Kim, Y. H. Hwang, Curr. Appl. Phys., 2013, 13, 271; DOI: https://doi.org/10.1016/j.cap.2012.07.023.
  31. T. Erdmenger, J. Vitz, F. Wiesbrock, U. S. Schubert, J. Mater. Chem., 2008, 18, 5267; DOI: https://doi.org/10.1039/b807119e.
  32. B. Docampo-Álvarez, V. Gómez-González, T. Méndez-Morales, J. R. Rodríguez, O. Cabeza, M. Turmine, L. J. Gallego, L. M. Varela, Phys. Chem. Chem. Phys., 2018, 20, 9938; DOI: https://doi.org/10.1039/c8cp00575c.
  33. Y. Wang, G. A. Voth, J. Am. Chem. Soc., 2005, 127, 12192; DOI: https://doi.org/10.1021/ja053796g.
  34. R. Hayes, G. G. Warr, R. Atkin, Chem. Rev., 2015, 115, 6357; DOI: https://doi.org/10.1021/cr500411q.
  35. Y.-L. L. Wang, B. Li, S. Sarman, F. Mocci, Z. Y. Lu, J. Yuan, A. Laaksonen, M. D. Fayer, Chem. Rev., 2020, 120, 5798; DOI: https://doi.org/10.1021/acs.chemrev.9b00693.
  36. O. Russina, A. Triolo, L. Gontrani, R. Caminiti, J. Phys. Chem. Lett., 2012, 3, 27; DOI: https://doi.org/10.1021/jz201349z.
  37. R. Hayes, S. Imberti, G. G. Warr, R. Atkin, Phys. Chem. Chem. Phys., 2011, 13, 3237; DOI: https://doi.org/10.1039/c0cp01137a.
  38. A. Triolo, A. Mandanici, O. Russina, V. Rodriguez-Mora, M. Cutroni, C. Hardacre, M. Nieuwenhuyzen, H.-J. J. Bleif, L. Keller, M. A. Ramos, J. Phys. Chem. B, 2006, 110, 21357; DOI: https://doi.org/10.1021/jp062895t.
  39. A. Triolo, O. Russina, V. Arrighi, F. Juranyi, S. Janssen, C. M. Gordon, J. Chem. Phys., 2003, 119, 8549; DOI: https://doi.org/10.1063/1.1613637.
  40. O. Russina, A. Triolo, Y. Aihara, M. T. F. Telling, H. Grimm, Macromolecules, 2004, 37, 8653; DOI: https://doi.org/10.1021/ma0493574.
  41. A. Triolo, O. Russina, C. Hardacre, M. Nieuwenhuyzen, M. A. Gonzalez, H. Grimm, J. Phys. Chem. B, 2005, 109, 22061; DOI: https://doi.org/10.1021/jp053355j.
  42. A. Triolo, O. Russina, H.-J. Bleif, E. Di Cola, J. Phys. Chem. B, 2007, 111, 4641; DOI: https://doi.org/10.1021/jp067705t.
  43. A. Triolo, O. Russina, H.-J. Bleif, E. Di Cola, J. Phys. Chem. B, 2007, 111, 4641; DOI: https://doi.org/10.1021/jp067705t.
  44. O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, L. G. Hines, R. A. Bartsch, E. L. Quitevis, N. Plechkova, K. R. Seddon, J. Phys.: Condens. Matter, 2009, 21, Art.ID 424121; DOI: https://doi.org/10.1088/0953-8984/21/42/424121.
  45. M. M. Seitkalieva, A. A. Grachev, K. S. Egorova, V. P. Ananikov, Tetrahedron, 2014, 70, 6075; DOI: https://doi.org/10.1016/j.tet.2014.02.025.
  46. A. E. Khudozhitkov, P. Stange, B. Golub, D. Paschek, A. G. Stepanov, D. I. Kolokolov, R. Ludwig, Angew. Chem., 2017, 129, 14500; DOI: https://doi.org/10.1002/ange.201708340.
  47. A. E. Khudozhitkov, P. Stange, A. M. Bonsa, V. Overbeck, A. Appelhagen, A. G. Stepanov, D. I. Kolokolov, D. Paschek, R. Ludwig, Chem. Commun., 2018, 54, 3098; DOI: https://doi.org/10.1039/c7cc09440j.
  48. A. S. Kashin, K. I. Galkin, E. A. Khokhlova, V. P. Ananikov, Angew. Chem., Int. Ed., 2016, 55, 2161; DOI: https://doi.org/10.1002/anie.201510090.
  49. B. Y. Mladenova, N. A. Chumakova, V. I. Pergushov, A. I. Kokorin, G. Grampp, D. R. Kattnig, J. Phys. Chem. B, 2012, 116, 12295; DOI: https://doi.org/10.1021/jp306583g.
  50. V. Strehmel, ChemPhysChem, 2012, 13, 1649; DOI: https://doi.org/10.1002/cphc.201100982.
  51. Y. Akdogan, J. Heller, H. Zimmermann, D. Hinderberger, Phys. Chem. Chem. Phys., 2010, 12, 7874; DOI: https://doi.org/10.1039/c001602k.
  52. A. I. Kokorin, B. Mladenova, E. N. Golubeva, G. Grampp, Appl. Magn. Reson., 2011, 41, 353; DOI: https://doi.org/10.1007/s00723-011-0247-z.
  53. A. V. Bogdanov, B. Y. Mladenova Kattnig, A. K. Vorobiev, G. Grampp, A. I. Kokorin, J. Phys. Chem. B, 2020, 124, 11007; DOI: https://doi.org/10.1021/acs.jpcb.0c08457.
  54. M. Y. Ivanov, M. V. Fedin, Mendeleev Commun., 2018, 28, 565; DOI: https://doi.org/10.1016/j.mencom.2018.11.001.
  55. M. Y. Ivanov, S. L. Veber, S. A. Prikhod’ko, N. Y. Adonin, E. G. Bagryanskaya, M. V. Fedin, J. Phys. Chem. B, 2015, 119, 13440; DOI: https://doi.org/10.1021/acs.jpcb.5b06792.
  56. M. Y. Ivanov, S. A. Prikhod’ko, N. Y. Adonin, E. G. Bagryanskaya, M. V. Fedin, Z. Phys. Chem., 2017, 231, 391; DOI: https://doi.org/10.1515/zpch-2016-0820.
  57. M. Y. Ivanov, O. A. Krumkacheva, S. A. Dzuba, M. V. Fedin, Phys. Chem. Chem. Phys., 2017, 19, 26158; DOI: https://doi.org/10.1039/C7CP04890D.
  58. M. Y. Ivanov, S. A. Prikhod’ko, N. Y. Adonin, I. A. Kirilyuk, S. V. Adichtchev, N. V. Surovtsev, S. A. Dzuba, M. V. Fedin, J. Phys. Chem. Lett., 2018, 9, 4607; DOI: https://doi.org/10.1021/acs.jpclett.8b02097.
  59. O. D. Bakulina, M. Y. Ivanov, S. A. Prikhod’ko, S. Pylaeva, I. V. Zaytseva, N. V. Surovtsev, N. Y. Adonin, M. V. Fedin, Nanoscale, 2020, 12, 19982; DOI: https://doi.org/10.1039/D0NR06065H.
  60. M. Y. Ivanov, S. A. Prikhod’ko, N. Y. Adonin, M. V. Fedin, J. Phys. Chem. B, 2019, 123, 9956; DOI: https://doi.org/10.1021/acs.jpcb.9b08933.
  61. M. Y. Ivanov, A. S. Poryvaev, D. M. Polyukhov, S. A. Prikhod’ko, N. Y. Adonin, M. V. Fedin, Nanoscale, 2020, 12, 23480; DOI: https://doi.org/10.1039/D0NR06961B.
  62. I. A. Kirilyuk, Y. F. Polienko, O. A. Krumkacheva, R. K. Strizhakov, Y. V. Gatilov, I. A. Grigor’ev, E. G. Bagryanskaya, J. Org. Chem., 2012, 77, 8016; DOI: https://doi.org/10.1021/jo301235j.
  63. V. N. Syryamina, S. A. Dzuba, J. Phys. Chem. B, 2017, 121, 1026; DOI: https://doi.org/10.1021/acs.jpcb.6b10133.
  64. D. A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S. A. Dzuba, L. Sportelli, Biophys. J., 2004, 87, 3873; DOI: https://doi.org/10.1529/biophysj.104.046631.
  65. D. A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S. A. Dzuba, L. Sportelli, J. Phys. Chem. B, 2004, 108, 4501; DOI: https://doi.org/10.1021/jp037249y.
  66. N. P. Isaev, S. A. Dzuba, J. Phys. Chem. B, 2008, 112, 13285; DOI: https://doi.org/10.1021/jp805794c.
  67. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42; DOI: https://doi.org/10.1016/j.jmr.2005.08.013.