Abstract / Full Text

The effect of various types of electrolyte on the behavior of lithium-polyimide batteries was studied. The electrolyte systems used included the liquid 1 M LiPF6 electrolyte in ethylene carbonate/dimethyl carbonate (1: 1), plasticized polymer electrolyte based on the polyvinylidene fluoride copolymer with hexafluoropropylene, and nanocomposite electrolyte with SiO2 nanoparticles introduced in different amounts. The structure rearrangement of polyimide during lithiation—delithiation was studied by cyclic voltammetry (CV), charge—discharge cycling, and quantum—chemical modeling using four types of electrolyte. The use of the polymer and nanocomposite electrolyte was shown to increase the discharge capacity of the polyimide cathode compared to that of the cell with liquid electrolyte, but the structural degradation of the polyimide cathode cannot be avoided.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    O. V. Yarmolenko, O. E. Romanyuk, A. A. Slesarenko, G. R. Baymuratova, N. I. Shuvalova, A. V. Mumyatov, P. A. Troshin & A. F. Shestakov

  • Faculty of Fundamental Physicochemical Engineering, Moscow State University, Moscow, 119991, Russia

    A. F. Shestakov

  • Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Skolkovo, Moscow, 143026, Russia

    P. A. Troshin

  1. Kulova, T.L. and Skundin, A.M., High-Voltage Materials for Positive Electrodes of Lithium Ion Batteries (Review), Russ. J. Electrochem., 2016, vol. 52, p. 501.
  2. Long, L., Wang, S., Xiao, M., and Meng, Y., Polymer electrolytes for lithium polymer batteries, J. Mater. Chem. A., 2016, vol. 4, p. 10038.
  3. Arya, A. and Sharma, A.L., Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 2017, vol. 23, p. 497.
  4. Costa, C.M., Gomez-Ribelles, J.L., Lanceros-Mendez, S., Appetecchi, G.B., and Scrosati, B., Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems, J. Power Sources, 2014, vol. 245, p. 779.
  5. Lee, Y.-Y. and Liu, Y.-L., Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery, Electrochim. Acta, 2017, vol. 258, p. 1329.
  6. Yarmolenko, O.V., Yudina, A.V., and Khatmullina, K.G., Nanocomposite polymer electrolytes for lithium power sources (a review), Russ. J. Electrochem., 2018, vol. 54, p. 325.
  7. Yanilmaz, M., Lu, Y., Dirican, M., Fu, K., and Zhang, X., Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques, J. Membr. Sci., 2014, vol. 456, p. 57.
  8. Yanilmaz, M., Chen, C., and Zhang, X., Fabrication and characterization of SiO2/PVDF composite nanofiber coated PP nonwoven separators for lithium ion batteries, J. Polym. Sci., Part B: Polym. Phys., 2013, vol. 51, p. 1719.
  9. Wu, Y.-S., Yang, C.-C., Luo, S.-P., Chen, Y.-L., We, C.-N., and Lue, S.J., PVDF-HFP/PET/PVDF- HFP composite membrane for lithium-ion power batteries, Int. J. Hydrogen Energy, 2017, vol. 42, p. 6862.
  10. Yanilmaz, M., Lu, Y., Dirican, M., Fu, K., and Zhang, X., Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques, J. Membr. Sci., 2014, vol. 456, p. 57.
  11. Zhang, F., Ma, X., Cao, C., Li, J., and Zhu, Y., Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries, J. Power Sources, 2014, vol. 251, p. 423.
  12. Li, W., Xing, Y., Xing, X., Li, Y., Yang, G., and Xu, L., PVDF-based composite microporous gel polymer electrolytes containing a novel single ionic conductor SiO2(Li+), Electrochim. Acta, 2013, vol. 112, p. 183.
  13. Li, W., Xing, Y., Wu, Y., Wang, J., Chen, L., Yang, G., and Tang, B., Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane, Electrochim. Acta, 2015, vol. 151, p. 289.
  14. Khatmullina, K.G., Baimuratova, G.R., Lesnichaya, V.A., Shuvalova, N.I., and Yarmolenko, O.V., Mechanical and electrochemical properties of new nanocomposite polymer electrolytes based on poly(vinylidene fluoride) copolymer with hexafluoropropylene and SiO2 addition, Polym. Sci., Ser. A, 2018, vol. 60, no. 2, p. 222.
  15. Haupler, B., Wild, A., Schubert, U.S., Carbonyls: Powerful Organic Materials for Secondary Batteries, Adv. Energy Mater., 2015, vol. 5, p. 1402034.
  16. Song, Z., Zhan, H., and Zhou, Y., Polyimides: Promising Energy-Storage Materials, Angew. Chem., Int. Ed., 2010, vol. 49, p. 8444.
  17. Luo, J., Zhu, Y.N., Yan, C., Long, X.-Y., Lu, S., Liu, S.-P., and Ge, M.-Q., Preparation of Organic Polymer Cathode Materials for Amide Lithium-ion Battery Anode and Their Electrochemical Performance, Acta Polymerica Sinica, 2017, vol. 4, p. 633.
  18. Reiner, B.R, Foxman, B.M., and Wade, C.R., Electrochemical and structural investigation of the interactions between naphthalene diimides and metal cations, Dalton Trans., 2017, vol. 46, no. 29, p. 9472.
  19. Schon, T.B., Tilley, A.J., Kynaston, E.L., and Seferos, D.S., Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 18, p. 15631.
  20. Sharma, P., Damien, D., Nagarajan, K., Shaijumon, M.M., and Hariharan, M., Perylene- polyimide-based organic electrode materials for rechargeable lithium batteries, J. Phys. Chem. Lett., 2013, vol. 4, p. 3192.
  21. Chen, C., Zhao, X., Li, H.-B., Gan, F., Zhang, J., Dong, J., and Zhang, Q., Naphthalene-based Polyimide Derivatives as Organic Electrode Materials for Lithium-ion Batteries, Electrochim. Acta, 2017, vol. 229, p. 387.
  22. Chen, L., Li, W., Wang, Y., Wang, C., and Xia, Y., Polyimide as anode electrode material for rechargeable sodium batteries, RSC Adv., 2014, vol. 4, p. 25369.
  23. Shestakov, A.F., Yarmolenko, O.V., Ignatova, A.A., Mumyatov, A.V., Stevenson, K.J., and Troshin, P.A., Structural origins of the capacity fading in the lithium- polyimide battery, J. Mater. Chem. A, 2017, vol. 5, p. 6532.
  24. Spectral Database for Organic Compounds SDBS. https://doi.org/sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.
  25. Appetecchi, G.B., Croce, F., Persi, L., Ronci, F., and Scrosati, B., Transport and interfacial properties of composite polymer electrolytes, Electrochim. Acta, 2000, vol. 45, pp. 1481–1490.
  26. Xu, W., Read, A., Koech, P.K., Hu, D., Wang, C., Xiao, J., Padmaperuma, A.B., Graff, G.L., Liu, J., and Zhang, J.-G., Factors affecting the battery performance of anthraquinone-based organic cathode materials, J. Mater. Chem., 2012, vol. 22, p. 4032.
  27. Tian, B., Ding, Z., Ning, G.-H., Tang, W., Peng, C., Liu, B., Su, J., Su, C., and Loh, K.P., Amino group enhanced phenazine derivatives as electrode materials for lithium storage, Chem. Commun., 2017, vol. 53, p. 2914.
  28. Ignatova, A.A. and Yarmolenko, O.V., Perspektivnye organicheskie katodnye materialy na osnove sopryazhennykh karbonil’nykh soedinenii dlya litievykh akkumulyatorov (Promising Organic Cathode Materials Based on Conjugated Carbonyl Compounds for Lithium Batteries), Al’tern. Energ. Ekol., 2015, nos. 8–9 (172–173), p. 112.
  29. Perdew, P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, p. 3865.
  30. Stevens, W.J., Basch, H., and Krauss, M.J., Valence basis set for transition metals (available Li-Rn) with corresponding ECPs, J. Chem. Phys., 1984, vol. 81, p. 6026.
  31. Laikov, D.N., Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets, Chem. Phys. Lett., 1997, vol. 281, nos. 1–3, p. 151.