Examples



mdbootstrap.com



 
Статья
2021

Sodium alginate and carbopol microcapsules: preparation, polyphenol encapsulation and release efficiency


E. V. PopovaE. V. Popova, P. V. MorozovaP. V. Morozova, M. V. UspenskayaM. V. Uspenskaya, A. S. RadilovA. S. Radilov
Российский химический вестник
https://doi.org/10.1007/s11172-021-3220-5
Abstract / Full Text

An approach for the preparation of a polymer delivery system consisting of sodium alginate (SA) and carbopol was developed. The efficiency of the inclusion of medicinal compounds in these systems was investigated using the polyphenols curcumin and resveratrol as examples. Curcumin and resveratrol possess anti-inflammatory, antitumor, and antibacterial effects, which makes them promising compounds for use in clinical practice. The main disadvantage of these polyphenols is their low bioavailability. The formation of microcapsules occurs due to the precipitation of a mixture of SA and carbopol (carbopol 940 or ETD 2020), containing a model object, in a calcium chloride solution. The dependence of the inclusion of drugs in microcapsules and their release into gastrointestinal environment imitators on the viscosity characteristics of carbopol, which is part of the microcapsule shell, was investigated.

Author information
  • Research Institute of Hygiene, Occupational Pathology, and Human Ecology of the Federal Medical Biological Agency of Russia, Korp. 93, st. Kapitolovo, 188663 p.g.t. Kuz’molovskii, Vsevolozhskii r-n, Leningrad Region, Kuzmolovsky, Russian FederationE. V. Popova & A. S. Radilov
  • National Research University ITMO, 49 Kronverkskii prosp., 197101, St. Petersburg, Russian FederationP. V. Morozova & M. V. Uspenskaya
References
  1. J. Li, D. J. Mooney, Nat. Rev. Mater., 2016, 1, 16071; DOI: https://doi.org/10.1038/natrevmats.2016.71.
  2. M. Ebara, Y. Kotsuchibashi, R. Narain, N. Idota, Y.-J. Kim, J. M. Hoffman, K. Uto, T. Aoyagi, in Smart Biomaterials, Springer, Tokyo, 2014, 380 pp.
  3. A. K. Bajpai, J. Bajpai, R. K. Saini, P. Agrawal, A. Tiwary, in Smart Biomaterial Devices, Taylor and Francis Group, Boca Raton, 2017, 242 pp.
  4. S. Swain, A. Behera, S. Beg, Recent Pat. Drug Del. Form., 2012, 6, 259.
  5. R. V. Ulijn, N. Bibi, V. Jayawarna, P. D. Thornton, S. J. Todd, R. J. Mart, A. M. Smith, J. E. Gough, Mater. Today, 2007, 10, No. 4, 40.
  6. A. Alekseev, S. A. Kedik, Farmatsevticheskaya tekhnologiya [Pharmaceutical Technology], AO IFT, Moscow, 2019, 570 pp. (in Russian).
  7. N. B. Demina, E. O. Bakhrushina, A. I. Bardakov, I. I. Krasnyuk, Farmatsiya [Pharmacy], 2019, 68, 12 (in Russian).
  8. W. R. Gombotz, S. F. Wee, Adv. Drug. Del. Rev., 1998, 31, 267.
  9. W. Hu, L. Huang, W. Jin, P. Ge, B. R. Shah, D. Zhu, J. Jing, Int. J. Biol. Macromol., 2019, 134, 210.
  10. E. V. Popova, Ph. D. Thesis (Chem.) Univ. of Information Technologies, Mechanics and Optics, Research Inst. of Hygiene, Occupational Pathology, and Human Ecology of FMBA of Russia, Saint Petersburg, 2017, 120 pp. (in Russian).
  11. R. Sun, Q. Xia, Coll. Surf. A: Physicochem. Eng. Asp., 2019, 574, 197.
  12. A. Badwan, A. Abumalooh, E. Sallam, A. Abukalaf, O. Jawan, Drug. Develop. Ind. Pharm., 1985, 11, 239.
  13. S. Y. Lin, J. W. Ayres, Pharm. Res., 1992, 9, 1128.
  14. L. Lin-Shu, L. Shu-Qin, Y. Ng Steven, M. Froix, T. Ohno, Control. Release J., 2000, 43, 65.
  15. C. A. Garcia-Gonsalez, M. Alnaief, I. Smirnova, Carbohydr. Polym., 2011, 86, 1425.
  16. K. Moebus, J. Siepmann, R. Bodmeier, Eur. J. Pharm. Sci., 2012, 45, 358.
  17. T. Hu, Q. Liu, T. Gao, K. Dong, G. Wei, J. Yao, ACS Omega, 2018, 3, 7523.
  18. C. Bertagnolli, A. Grishin, T. Vincent, E. Guibal, J. Environ. Sci. Health, Part. A, 2017, 52, 359.
  19. T. Wu, S. Yu, D. Lin, Z. Wu, ACS Appl. Bio Mater., 2020, 3, 3057.
  20. A. I. Tentsova, M. T. Alyushina, Polimery v farmatsii [Polymers in Pharmacy], Meditsina, Moscow, 1985, 256 pp. (in Russian).
  21. A. M. Lopez-Cacho, R. Alvares, J. M. Gonsales Rodriguez, B. Talero, B. Gonsales Rodriguez, Sci. World J., 2012, 1.
  22. S. H. Neau, M. Y. Chow, M. J. Durrani, Int. J. Pharm., 1996, 131, 47.
  23. N. Desai, S. P. Jain, Res. Rev.: J. Pharm. Sci., 2011, 2, 2.
  24. S. Parker-Leggs, S. H. Neau, Int. J. Pharm., 2008, 361, 169.
  25. P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, Mol. Pharm., 2007, 4, 807.
  26. N. Rabiee, S. Deljoo, M. Rabiee, Asian J. Nanosci. Mater., 2018, 2, 66.
  27. V. P. Menon, A. R. Sudheer, The Molecular Targets and Therapeutic Uses of Curcumine in Health and Disease, Vol. 595, Springer, Boston, 2007, p. 105.
  28. S. S. Bansal, M. Goel, F. Aqil, M. V. Vadhanam, R. C. Gupta, Cancer. Prev. Res., 2011, 4, 1158.
  29. M. Saheb, N. Fereydouni, S. Nemati, G. Barreto, T. Johnstone, A. Sahebkar, J. Cell. Physiol., 2019, 234, 12325.
  30. L. Dai, H. Zhou, Y. Wei, Y. Gao, D. J. McClements, Food Hydrocoll., 2019, 93, 342.
  31. A. Rajput, A. Bariya, A. Allam, S. Othman, S. B. Butani, Drug. Del. Transl. Res., 2018, 8, 1460.
  32. J. Li, G. H. Shin, X. Chen, J. H. Park, Food Res. Int., 2015, 69, 202.
  33. F. Bai, Y. Wang, Q. Han, M. Wu, Q. Luo, H. Zhang, Y. Wang, J. Mol. Liq., 2019, 288, 111079.
  34. S. Karthikeyan, N. Rajendra Prasad, A. Ganamani, E. Balamurugan, Biomed. Prev. Nutr., 2013, 3, 64.
  35. A. Amri, J. C. Chaumeil, S. Sfar, C. Charrueau, J. Control. Release, 2012, 185, 182.