Статья
2020

The Effect of the Cation-Exchange Membranes MK-40 Modification by Perfluorinated Sulfopolymer and Ceria on Their Transport Properties


P. A. Yurova P. A. Yurova , I. A. Stenina I. A. Stenina , A. B. Yaroslavtsev A. B. Yaroslavtsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520060154
Abstract / Full Text

Composite materials based on heterogeneous membranes MK-40 modified by a thin layer of homogeneous cation-exchange perfluorinated sulfo membrane MF-4SK doped with 2 and 5% ceria are prepared. The transport characteristics of these membranes in different ionic forms are studied. It is shown that the conductivity of ionic forms of membranes increases in the sequence Li+ < Na+ < К+ < H+. In all these forms except for the lithium form, the membrane containing 2% ceria has the highest conductivity. Modification leads to a considerable increase in selectivity of membranes which manifests itself as a decrease in transport numbers of anions (from 0.006 for the original membrane to 0.002 for the membrane with 5% ceria). The higher selectivity with respect to the transfer of nitrate ions as compared with chloride ions is observed.

Author information
  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

    P. A. Yurova, I. A. Stenina & A. B. Yaroslavtsev

  • National Research University “Higher School of Economics, 101000, Moscow, Russia

    P. A. Yurova & A. B. Yaroslavtsev

  • Кuban State University, 350040, Krasnodar, Russia

    I. A. Stenina

References
  1. Strathmann H., Grabowski A., and Eigenberger G., Ion-exchange membranes in the chemical process industry, Ind. Eng. Chem. Res., 2013, vol. 52, p. 10364.
  2. Safronova, E.Y. and Yaroslavtsev, A.B., Prospects of practical application of hybrid membranes, Pet. Chem., 2016, vol. 56, p. 281.
  3. Ran, J., Wu, L., He, Y., Yang, Zh., Wang, Y., Jiang, Ch., Ge, L., Bakangura, E., and Xu, T., Ion exchange membranes: New developments and applications, J. Membr. Sci., 2017, vol. 522, p. 267.
  4. Luo, T., Abdu, S., and Wessling, M., Selectivity of ion exchange membranes: A review, J. Membr. Sci., 2018, vol. 555, p. 429.
  5. Yaroslavtsev, A.B. and Yampolskii, Yu.P., Hybrid membranes containing inorganic nanoparticles, Mendeleev Commun., 2014, vol. 24, p. 319.
  6. Bakangura, E., Wu, L., Ge, L., Yang, Zh., and Xu, T., Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives, Progr. Polym. Sci., 2016, vol. 57, p. 103.
  7. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G., and Larchet, C., Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis, Adv. Colloid Interface Sci. 2010. vol. 160, p. 101.
  8. Vasil’eva, V., Goleva, E., Pismenskaya, N., Kozmai, A., and Nikonenko, V., Effect of surface profiling of a cation-exchange membrane on the phenylalanine and NaCl separation performances in diffusion dialysis, Separ. Purif. Technol., 2019, vol. 210, p. 48.
  9. Khoiruddin, K., Ariono, D., Subagjo, S., and Wenten, I.G., Surface modification of ion-exchange membranes: Methods, characteristics, and performance, J. Appl. Polym. Sci., 2017, vol. 134, p. 45540.
  10. Ul Afsar, N., Ji, W., Wu, B., Shehzad, M.A., Ge, L., and Xu, T., SPPO-based cation exchange membranes with a positively charged layer for cation fractionation, Desalination, 2019, vol. 472, p. 114145.
  11. Farrokhzad, H., Moghbeli, M.R., Van Gerven, T., and Van der Bruggen, B., Surface modification of composite ion exchange membranes by polyaniline, React. Funct. Polym., 2015, vol. 86, p. 161.
  12. Jiang, W., Lin, L., Xu, X., Wang, H., and Xu, P., Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis, J. Membr. Sci., 2019, vol. 572, p. 545.
  13. Li, J., Yuan, Sh., Wang, J., Zhu, J., Shen, J., and Van der Bruggen, B., Mussel-inspired modification of ion exchange membrane for monovalent separation, J. Membr. Sci., 2018, vol. 553, p. 139.
  14. White, N., Misovich, M., Yaroshchuk, A., and Bruening, M.L., Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 6620.
  15. Zhao, Y., Tang, K., Liu, H., Van der Bruggen, B., Sotto Diaz, A., Shen, J., and Gao, C., An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity, J. Membr. Sci., 2016, vol. 520, p. 262.
  16. Gao, H., Zhang, B., Tong, X., and Chen, Y., Monovalent-anion selective and antifouling polyelectrolytes multilayer anion exchange membrane for reverse electrodialysis, J. Membr. Sci., 2018, vol. 567, p. 68.
  17. Hosseini, S.M., Madaeni, S.S., Zendehnam, A., Moghadassi, A.R., Khodabakhshi, A.R., and Sanaeepur, H., Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification, J. Ind. Eng. Chem., 2013, vol. 19, p. 854.
  18. Wang, X., Chen, G.Q., Zhang, W., and Deng, H., Surface-modified anion exchange membranes with self-cleaning ability and enhanced antifouling properties, J. Taiwan Inst. Chem. Eng., 2019, vol. 105, p. 8.
  19. Yurova, P.A., Karavanova, Yu.A., Stenina, I.A., and Yaroslavtsev, A.B., Synthesis and studies on the diffusion properties of MK-40 cation-exchange membranes modified with ceria, Nanotechnol. Russ., 2016, vol. 11, p. 761.
  20. Volkov, V.I., Volkov, E.V., Timofeev, S.V., Sanginov, E.A., Pavlov, A.A., Safronova, E.Yu., Stenina, I.A., and Yaroslavtsev, A.B., Water self-diffusion and ionic conductivity in perfluorinated sulfocationic membranes MF-4SK, Russ. J. Inorg. Chem., 2010, vol. 55, p. 315.
  21. Golubenko, D.V., Shaydullin, R.R., and Yaroslavtsev, A.B., Improving the conductivity and permselectivity of ion-exchange membranes by introduction of inorganic oxide nanoparticles: impact of acid–base properties, Colloid Polym. Sci., 2019, vol. 297, p. 741.
  22. Yaroslavtsev, A.B., Karavanova, Yu.A., and Safronova, E.Yu., Ionic conductivity of hybrid membranes, Pet. Chem., 2011, vol. 51, p. 473.
  23. Kreuer, K.-D., Paddison, S.J., Spohr, E., and Schuster, M., Transport in proton conductors for fuel-cell applications:  simulations, elementary reactions, and phenomenology, Chem. Rev., 2004, vol. 104, p. 4637.
  24. Stenina, I.A. and Yaroslavtsev, A.B., Low- and intermediate-temperature proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, p. 253.
  25. Nikonenko, V.V., Yaroslavtsev, A.B., and Pourcelly, G., Ion transfer in and through charged membranes. Structure, properties, theory, in Ionic Interactions in Natural and Synthetic Macromolecules, Ciferri, A. and Perico, A., Eds., New Jerey: Wiley, 2012, p. 267.