Examples



mdbootstrap.com



 
Статья
2021

Thermal Behavior of Mixtures of Zirconium(IV) and Yttrium(III) Dipivaloylmethanates


A. E. TurgambaevaA. E. Turgambaeva, K. V. ZherikovaK. V. Zherikova, S. A. MosyaginaS. A. Mosyagina, V. V. KrisyukV. V. Krisyuk, V. V. LukashovV. V. Lukashov, I. K. IgumenovI. K. Igumenov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221040042
Abstract / Full Text

The thermal properties of individual precursors, zirconium(IV) and yttrium(III) dipivaloylmethanates, and of their mixtures [Zr(thd)4–Y(thd)3, Hthd = 2,2,6,6-tetramethylheptane-3,5-dione] used for preparing mixed oxide films by chemical vapor deposition were studied in the condensed and gas phases. In the condensed phase, the vaporization rate of both individual compounds and their mixtures considerably exceeds the decomposition rate. The vaporization, thermal stability of the vapors, and thermal decomposition of the compounds in a vacuum and in the presence of oxygen were studied using mass-spectrometric monitoring of the gas phase composition. Comparison of the thermal behavior of individual Zr(thd)4 and Y(thd)3, heated in separate vaporizers of the mass spectrometer inlet system, and of their mixtures with different Zr(thd)4 to Y(thd)3 ratios reveals no chemical interaction between the precursors in the examined temperature interval.

Author information
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, RussiaA. E. Turgambaeva, K. V. Zherikova, S. A. Mosyagina, V. V. Krisyuk, V. V. Lukashov & I. K. Igumenov
  • Novosibirsk State University, 630090, Novosibirsk, RussiaS. A. Mosyagina
  • Kutateladze Institute of Thermal Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, RussiaV. V. Lukashov
References
  1. Muboyadzhyan, S.A., Budinovskii, S.A., Gayamov, A.M., and Smirnov, A.A., Aviats. Mater. Tekhnol., 2012, no. 4, pp. 3–8.
  2. Igumenov, I.K. and Aksenov, A.N., Therm. Eng., 2017, vol. 64, no. 12, pp. 865–873. https://doi.org/10.1134/S0040601517120035 
  3. Chemical Vapor Deposition—Precursors, Processes and Applications, Jones, A.C. and Hitchmanm, M.L., Eds., Cambridge: Roy. Soc. Chem., 2009. https://doi.org/10.1039/9781847558794
  4. Syrkin, V.G., CVD-Metod. Khimicheskoe parofaznoe osazhdenie (CVD Method. Chemical Vapor Deposition), Moscow: Nauka, 2000, pp. 177–180.
  5. Wahl, G., Nemetz, W., Giannozzi, M., Rushworth, S., Baxter, D., Archer, N., Cernuschi, F., and Boyle, N., J. Eng. Gas Turbines Power, 2000, vol. 123, no. 3, pp. 520–524. https://doi.org/10.1115/1.1364495
  6. Wahl, G., Metz, Ch., and Samoilenkov, S., J. Phys. IV: Proc., 2001, vol. 11, no. Pr3, pp. 835–846. https://doi.org/10.1051/jp4:20013105
  7. Garcia, J.R.V. and Goto, T., Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 397–402. https://doi.org/10.1016/S1468-6996(03)00048-2
  8. Tu, R. and Goto, T., Mater. Trans., 2005, vol. 46, no. 6, pp. 1318–1323. https://doi.org/10.2320/matertrans.46.1318
  9. Abdrakhmanov, R.Kh., Dvornikov, N.A., and Lukashov, V.V., Teplofiz. Aeromekh., 2017, vol. 24, no. 3 (105), pp. 349–356.
  10. Zaitseva, I.G., Kuz’mina, N.P., and Martynenko, L.I., Russ. J. Coord. Chem., 1999, vol. 25, no. 11, pp. 811–815.
  11. Kuzmina, N.P., Martynenko, L.I., Chugarov, N.V., Zaitseva, I.G., Grigoriev, A.N., and Yakushevich, A.N., J. Alloys Compd., 2000, vol. 308, nos. 1–2, pp. 158–162. https://doi.org/10.1016/S0925-8388(00)01047-1
  12. Zharkova, N.Ya., Dzyubenko, N.G., and Martynenko, L.I., Russ. J. Coord. Chem., 1997, vol. 23, no. 7, pp. 483–487.
  13. Turgambaeva, A.E., Zherikova, K.V., Mosyagina, S.A., and Igumenov, I.K., Russ. J. Appl. Chem., 2017, vol. 90, no. 7, pp. 1062−1067. https://doi.org/10.1134/S1070427217070060
  14. Zelenina, L.N., Chusova, T.P., Zherikova, K.V., Nazarova, A.A., and Igumenov, I.K., J. Therm. Anal. Calorim., 2018, vol. 133, pp. 1157–1165. https://doi.org/10.1007/s10973-018-7241-8
  15. Turgambaeva, A., Prud’homme, N., Krisyuk, V., and Vahlas, C., Chem. Vapor Depos., 2012, vol. 18, pp. 209–214. https://doi.org/10.1002/cvde.201106972
  16. Spijksma, G.I., Bouwmeester, H.J.M., Blank, D.H.A., Fischer, A., Henry, M., and Kessler, V.G., Inorg. Chem., 2006, vol. 45, pp. 4938–4950. https://doi.org/10.1021/ic051674j
  17. Gromilov, S.A., Baidina, I.A., Prokhorova, S.A., and Stabnikov, P.A., J. Struct. Chem., 1995, vol. 36, no. 3, pp. 496–501. https://doi.org/10.1007/BF02578537