Examples



mdbootstrap.com



 
Статья
2021

Linear Correlation between Kovats Retention Indices I and the Sum of 13C Nuclear Magnetic Resonance Chemical Shifts in the Structural Isomers of Saturated Hydrocarbons


A. M. AparkinA. M. Aparkin, V. A. PashininV. A. Pashinin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421010027
Abstract / Full Text

A linear correlation between the Kovats retention indices I and the sum of 13C nuclear magnetic resonance chemical shifts in structural isomers of saturated hydrocarbons was revealed. The equation y = ax + b was found to describe this correlation with the coefficients a and b being –1.3 and 613.8, respectively, for structural isomers of pentane; –1.8 and 836.2 for isomers of hexane; –3.0 and 1210.1 for isomers of heptane. Analysis of the dependences based on the theory of generalized charges proves the theoretical concept of additive character of the charges and points to a significant role of p electrons in the adsorption process. On the other hand, analysis of literature data shows that obtained results may be useful for the further development of the theory of generalized charges.

Author information
  • Russian University of Transport (MIIT), 127992, Moscow, RussiaA. M. Aparkin & V. A. Pashinin
References
  1. A. M. Dolgonosov, Electron Gas Model and Generalized Charge Theory for Describing Interatomic Forces and Adsorption (LIBROKOM, Moscow, 2009) [in Russian].
  2. A. M. Dolgonosov, Russ. J. Phys. Chem. A 72, 91 (1998).
  3. A. M. Dolgonosov, Prot. Met. Phys. Chem. Surf. 51, 951 (2015).
  4. A. M. Dolgonosov, Russ. J. Phys. Chem. A 72, 1165 (1998).
  5. A. G. Prudkovskii and A. M. Dolgonosov, J. Anal. Chem. 63, 852 (2008).
  6. V. V. Vazhev and M. K. Aldabergenov, Russ. J. Appl. Chem. 78, 453 (2005).
  7. W. K. Choi, T. I. Kwon, Y. K. Yeo, et al., Korean J. Chem. Eng. 21, 712 (2004).
  8. A. M. Dolgonosov, Dokl. Phys. Chem. 358, 26 (1998).
  9. A. M. Dolgonosov, Russ. J. Phys. Chem. A 75, 324 (2001).
  10. N. A. Kropotova, NovaInfo, No. 78, 1 (2018).
  11. A. V. Kiselev, Intermolecular Interactions in Adsorption and Chromatography (Vysshaya Shkola, Moscow, 1986) [in Russian].
  12. H. Günter, NMR Spectroscopy: An Introduction (Wiley, New York, 1980).
  13. F. W. Wehrli and T. Wirthlin, Interpretation of Carbon- 13 NMR Spectra (Heyden, London, 1978).
  14. K. S. Krasnov, Molecules and Chemical Bond (Vyssh. Shkola, Moscow, 1984) [in Russian].
  15. A. N. Vereshchagin, Polarizability of Molecules (Nauka, Moscow, 1980).
  16. D. R. Lide, Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 2004).
  17. V. I. Minkin, The Theory of Molecular Structure (Electron Shells) (Vyssh. Shkola, Moscow, 1979) [in Russian].
  18. B. Howard, B. Linder, and T. Merle, J. Chem. Phys. 36, 485 (1962).
  19. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy (Elsevier, Amsterdam, 1966).
  20. N. M. Sergeev, NMR Spectroscopy (Mosk. Gos. Univ., Moscow, 1981) [in Russian].
  21. D. M. Grant and E. G. Paul, J. Am. Chem. Soc. 86, 2984 (1964).
  22. L. P. Lindeman and J. Q. Adams, Anal. Chem. 43, 1245 (1971).
  23. Yu. B. Vysotsky and V. S. Bryantsev, Int. J. Quantum Chem. 96, 123 (2004).
  24. V. S. Bryantsev, O. A. Gorban, and Yu. B. Vysotsky, Khim. Geterotsikl. Soedin. 12, 1451 (2002).
  25. A. O. Vasylyev, E. A. Belyaeva, and Yu. B. Vysotsky, Nauk. Prati DonNTU, Ser.: Chem. Chem. Technol. 20, 44 (2013).
  26. ACD/Labs. http:/www.acdlabs.com.