The Effect of the Nature of Cation on Transport Properties of Bis(trifluoromethylsulfonyl)imide Ionic Liquids

E. P. Grishina E. P. Grishina , N. O. Kudryakova N. O. Kudryakova , L. M. Ramenskaya L. M. Ramenskaya , Yu. A. Fadeeva Yu. A. Fadeeva
Российский электрохимический журнал
Abstract / Full Text

The methods of viscosimetry, conductometry, densimetry, and differential scanning calorimetry are used for studying the physicochemical properties of cations (1-butyl-3-methylimidazolium [BuMeIm]+, N-butylmethylpyrrolidinium [BuMePyrr]+, and methytrioctylammonium [MeOc3Am]+) and their effect on the transport properties of bis(trifluoromethylsulfonyl)imide ionic liquids (IL). It is shown that ILs formed by cyclic amines ([BuMeIm]+ and [BuMePyrr]+) as the cations demonstrate the close values and temperature dependences of viscosity and conductivity. The cation [MeOc3Am]+ predetermines the difference in the IL structure and, thus, a substantial difference in the transport properties of the melt. For salts [BuMeIm][Tf2N], [BuMePyrr][Tf2N], and [MeOc3Am][Tf2N] at 293 К, the following transport characteristics are observed: viscosity 57.7, 88.1, and 726.5 mPa s; specific conductivity 0.376, 0.252, and 0.005 S m–1; activation energy of conductivity 21, 21, and 35 kJ mol–1; degree of “ionicity” 0.92, 0.94, and 1.00, respectively. Using the equation of Vogel–Fulcher–Tammann and based on the temperature dependences of specific conductivity and viscosity, the ideal glass transition temperatures are calculated for liquids under study. In the positive temperature range, a linear correlation is observed between the conductivity and the cation volume in these ionic liquids.

Author information
  • Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045, Ivanovo, Russia

    E. P. Grishina, N. O. Kudryakova, L. M. Ramenskaya & Yu. A. Fadeeva

  • Ivanovo State University of Chemistry and Technology, 153000, Ivanovo, Russia

    E. P. Grishina

  1. Chiappe, C. and Pieraccini, D., Ionic liquids: solvent properties and organic reactivity, J. Phys. Org. Chem., 2005, vol. 18, p. 275.
  2. Galińnski, M., Lewandowski, and A., Stępniak, I., Ionic liquids as electrolytes, Electrochim. Acta, 2006, vol. 51, p. 5567.
  3. Hardacre, C., Holbrey, J.D., McMath, S.E.J., Bowron, D.T., and Soper, A.K., Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction, J. Chem. Phys., 2003, vol. 118, p. 273.
  4. Consorti, C.S., Suarez, P.A.Z., de Souza, R.F., Burrow, R.A., Farrar, D.H., Lough, A.J., Loh, W., de Silva, L.H.M., and Dupont, J., Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution, J. Phys. Chem. B., 2005, vol. 109, p. 4341.
  5. Zhao, H., Current studies on some physical properties of ionic liquids. Review, Phys. Chem. Liq., 2003, vol. 41, p. 545.
  6. Appetecchi, G.B., Montanino, M., Zane, D., Carewska, M., Alessandrini, F., and Passerini, S., Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids, Electrochim. Acta, 2009, vol. 54, p. 1325.
  7. Vila, J., Varela, L.M., and Cabeza, O., Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids, Electrochim. Acta, 2007, vol. 52, p. 7413.
  8. Hawker, R.R., Haines, R.S., and Harper, J.B., Variation of the cation of ionic liquids: the effects on their physicochemical properties and reaction outcome, Targets Heterocycl. Syst., 2014, vol. 18, p. 141.
  9. Pott, T. and Meleard, P., New insight into the nanostructure of ionic liquids: a small angle X-ray scattering (SAXS) study on liquid tri-alkyl-methyl-ammonium bis(trifluoromethanesulfonyl)amides and their mixtures, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 5469.
  10. Grishina, E.P., Kudryakova, N.O., Ramenskaya, L.M., and Fadeeva, Yu.A., The temperature effect on the transport properties of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, Russ. J. Phys. Chem. A, 2018, vol. 92, p. 724.
  11. Wasserscheid, P. and Welton, T., Ionic Liquids in Synthesis, Weinheim: Wiley-VCH, 2003.
  12. Zhao, H., Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids, J. Chem Technol. Biotechnol., 2006, vol. 81, p. 877.
  13. Tomšík, E. and Gospodinova, N., Water in ionic liquids: Correlation between anion hydrophilicity and near-Infrared fingerprints, ChemPhysChem., 2016, vol. 17, p. 1586.
  14. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., and Rogers, R.D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem., 2001, vol. 3, p. 156.
  15. Grishina, E.P., Pimenova, A.M., Ramenskaya, L.M., and Kraeva, O.V., Electrochemical properties of 1-butyl-3-methylimidazolium bromide melt containing water impurities, Russ. J. Electrochem., 2008, vol. 44, p. 1257.
  16. Ramenskaya, L.M., Grishina, E.P., Pimenova, A.M., and Gruzdev, M.S., The influence of water on the physicochemical characteristics of 1-butyl-3-methylimidazolium bromide ionic liquid, Russ. J. Phys. Chem. A., 2008, vol. 82, p. 1098.
  17. Grishina, E.P. and Kudryakova, N.O., Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions, Russ. J. Phys. Chem. A, 2017, vol. 91, no. 10, p. 2024.
  18. O’Mahony, A.M., Silvester, D.S., Aldous, L., Hardacre, C., and Compton, R.G., Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids, J. Chem. Eng. Data, 2008, vol. 53, p. 2884.
  19. Salminen, J., Papaiconomou, N., Kumar, R.A., Lee, J.-M., Kerr, J., Newman, J., and Prausnitz, J.M., Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Phase Equilib., 2007, vol. 261, p. 421.
  20. Perissi, I., Caporali, S., Fossati, A., and Lavacchi, A., Corrosion resistance of metallic materials in ionic liquids, Adv. Chem. Res., 2011, vol. 6, p. 315.
  21. Grishina, E.P., Pimenova, A.M., Borzova, E.V., Kudryakova, N.O., and Ramenskaya, L.M., Corrosion resistance of high-capacity aluminum foil in imidazole ionic liquids, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2014, no. 57, p.78.
  22. Köddermann, T., Wertz, C., Heintz, A., and Ludwig, R., Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration, ChemPhysChem., 2006, vol. 7, p. 1944.
  23. Best, A.S., Bhatt, A.I., and Hollenkamp, A.F., Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology, J. Electrochem. Soc., 2010, vol. 157, p. A903.
  24. Appetecchi, G.B., Montanino, M., Carewska, M., Moreno, M., Alessandrini, F., and Passerini, S., Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids, Electrochim. Acta, 2011, vol. 56, p. 1300.
  25. Deng, M.-J., Su, C.-J., Hsu, S.C.N., and Chen, P.-Y., The bis((trifluoromethyl)sulfonyl)imide-based room temperature ionic liquids used for several electrochemical applications, ECS Trans., 2007, vol. 3, p. 297.
  26. Bahadur, I., Osman, K., Coquelet, C., Naidoo, P., and Ramjugernath, D., Solubilities of carbon dioxide and oxygen in the ionic liquids methyltrioctylammonium bis(trifuoromethylsulfonyl) imide, 1-butyl-3-methylimidazolium bis(trifuoromethylsulfonyl) imide, and 1-butyl-3-methylmethyl sulphate, J. Phys. Chem. B., 2015, vol. 119, p. 1503.
  27. Pratt, K.W., Koch, W.F., Wu, Y.C., and Berezansky, P.A., Molality-based primary standards of electrolytic conductivity (IUPAC Technical Report), Pure Appl. Chem., 2001, vol. 73, p. 1783.
  28. Tokuda, H., Ishii, K., Susan, M.A.B.H., Tsuzuki, S., Hayamizu, K., and Watanabe, M., Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures, J. Phys. Chem. B., 2006, vol. 110, p. 2833.
  29. Xiao, D., Rajian, J.R., Cady, A., Li, S., Bartsch, R.A., and Quitevis, E.L., Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids, J. Phys. Chem. B, 2007, vol. 111, p. 4669.
  30. Shirota, H., Funston, A.M., Wishart, J.F., and Castner, E.W., Ultrafast dynamics of pyrrolidinium cation ionic liquids, J. Chem. Phys., 2005, vol. 122, p. 184512.
  31. Vraneš, M., Zec, N., Tot, A., Papović, S., Dožić, S., and Gadžurić, S., Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + propylene carbonate binary mixtures, J. Chem. Thermodyn., 2014, vol. 68, p. 98.
  32. Troncoso, J., Cerdeirin, C.A., Sanmamed, Y.A., Romani, L., Paulo, L., and Robelo, N., Thermodynamic properties of imidazolium-based ionic liquids:  Densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data, 2006, vol. 51, p. 1856.
  33. Gardas, R.L., Costa, H.F., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M. A., Ferreira, A.G.M., and Coutinho, J.A.P., Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids, J. Chem. Eng. Data, 2008, vol. 53, p. 805.
  34. Froba, A. P., Kremer, H., and Leipertz, A., Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure, J. Phys. Chem. B, 2008, vol. 112, p. 12420.
  35. Bonhôte, P., Dias, A.P., Papageorgiou, N., Kalya-nasundaram, K., and Grätzel, M., Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, vol. 35, p. 1168.
  36. Pan, Y., Boyd, L.E., Kruplak, J.F., Jr. Cleland, W.E., Wilkes, J.S., and Hussey, C.L., Physical and transport properties of bis(trifluoromethylsulfonyl)imide-based room-temperature ionic liquids: Application to the diffusion of tris(2,2′-bipyridyl)ruthenium(II), J. Electrochem. Soc., 2011, vol. 158, p. F1.
  37. Tokuda, H., Hayamizu, K., Ishii, K., Md. Abu Bin Hasan Susan, and Watanabe, M., Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B, 2005, vol. 109, p. 6103.
  38. Gómez, E., Calvar, N., Macedo, and Dominguez, A., Effect of the temperature on the physical properties of pure 1-propyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixtures with alcohols, J. Chem. Thermodyn., 2012. vol. 45, p. 9.
  39. Every, H.A., Bishop, A.G., MacFarlane, D.R., Oradd, G., and Forsyth, M., Transport properties in a family of dialkylimidazolium ionic liquids, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 1758.
  40. Xu, W., Cooper, E.I., and Angell, C.A., Ionic liquids: ion mobilities, glass temperatures, and fragilities, J. Phys. Chem. B., 2003, vol. 107, p. 6170.
  41. Lopes, J.N.A.C. and Pádua, A.A.H., Nanostructural organization in ionic liquids, J. Phys. Chem. B., 2006, vol. 110, p. 3330.
  42. Dong, K., Zhang, S., and Wang, J., Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions, Chem. Commun., 2016, vol. 52, p. 6744.
  43. Fumino, K., Wulf, A., and Ludwig, R., Strong, Localized, and directional hydrogen bonds fluidize ionic liquids, Angew. Chem., Int. Ed., 2008, vol. 47, p. 8731.
  44. Delimarskii, Yu.K., Elektrokhimiya of ionnykh rasplavov (Electrochemistry Ionic Melts), Moscow: Metallurgiya, 1978.