Examples



mdbootstrap.com



 
Статья
2021
Abstract / Full Text

The paper presents the development of the statistical theory of phase transformation of lithium aluminum amide with the formation of ammonia. Free energies of phases are calculated, and their dependences on temperature, pressure, hydrogen concentration and energy parameters are suggested. The phase diagram is suggested and thermodynamic equilibrium is calculated herein. Isothermal processes in phases are investigated. Rectangularity and structure degree coefficients are calculated for isotherms. The temperature dependence is identified for the hydrogen concentration in phases.

Author information
  • Institute for Problems in Materials Science of the Ukrainian Academy of Sciences, Kiev, UkraineD. V. Shchur, S. Yu. Zaginaichenko, N. A. Gavrylyuk, A. D. Zolotarenko, Al. D. Zolotarenko & An. D. Zolotarenko
  • International Hydrogen Energy Association, Miami, Florida, USAAyfer Veziroglu & T. N. Veziroglu
  • Kazakh-British Technical University, Alamty, KazakhstanM. T. Gabdullin
  • Al-Farabi Kazakh National University, Almaty, KazakhstanD. V. Shchur, M. T. Gabdullin & T. S. Ramazanov
References
  1. H. Jacobs and K. Jänichen, Z. Anorg. Allg. Chem., 531, 125–139 (1985).
  2. Y. Nakamori, G. Kitahara, and S. Orimo, J. Power Sources, 136, 309–312 (2004).
  3. F. E. Pinkerton, J. Alloys Compd., 400, 76–82 (2005).
  4. G. P. Meisner, M. I. Schullin, M. P. Balogh, et al., J. Phys. Chem. B, 110, 4186–4192 (2006).
  5. Y. Kojima, M. Matsumoto, Y. Kawai, et al., J. Phys. Chem. B, 110, No. 19, 9632–9636 (2006).
  6. R. Janot, J.-B. Eymery, and J.-M. Tarascon, J. Phys. Chem., 111, No. 5, 2335–2340 (2007).
  7. J.-B. Eymery, L. Truflandier, T. Charpentier, et al., J. Alloys Compd., 503, 194–203 (2010).
  8. T. Ono, K. Shimoda, M. Tsubota, et al., J. Alloys Compd., 506, 297–301 (2010).
  9. T. Ono, K. Shimoda, M. Tsubota, et al., J. Phys. Chem. C, 115, 10284–10201 (2011).
  10. S. Hino, H. Grove, T. Ichikawa, et al., Int. J. Hydrogen Energ., 40, 16938–16947 (2015).
  11. K. Ikeda, T. Otomo, H. Ohshita, et al., Mater. Trans., 55, No. 8, 1129–1133 (2014).
  12. I. Dovgaliuk and Y. Filinchuk, Int. J. Hydrogen Energ., 41, 15489–15504 (2016).
  13. B. N. Kuzyk, V. N. Kushlin, and Yu. V. Yakovets, On the Way to Hydrogen Power [in Russian], INES, Moscow (2005).
  14. S. V. Zakharov, Omskii nauchnyi vestnik. Energetika, 1, No. 54, 158–161 (2007).
  15. А. А. Smirnov, Molecular Kinetic Theory of Metals [in Russian], Nauka, Moscow (1966).
  16. Y. M. Lytvynenko and D. V. Schur, Renew. Energy, 16, No. 1–4, 753–756 (1999).
  17. D. V. Schur, A. G. Dubovoy, S. Yu. Zaginaichenko, et al., in: Abstracts of Int. Carbon Conf., Providence, Rhode Island, USA, (2004).
  18. K. B. Isayev and D. V. Schur, Int. J. Hydrogen Energ., 21, No. 11–12, 1129–1132 (1996).
  19. D. V. Schur, A. A. Liashenko, V. M. Adejev, et al., Int. J. Hydrogen Energ., 20, No. 5, 405–407 (1995).
  20. Z. A. Matysina, D. V. Schur, and S. Y. Zaginaichenko, Int. J. Hydrogen Energ., 21, No. 11–12, 1085–1089 (1996).
  21. N. S. Anikina, S. Y., Zaginaichenko, M. I. Maistrenko, et al., in: Proc. 9th Int. Conf.“Hydrogen Materials Science and Chemistry of Carbon Nanomaterials,” Sudak, Ukraine (2003) pp. 207–216.
  22. N. S. Anikina, O. Ya. Krivushchenko, D. V. Shchur, et al., in: Proc. 9th Int. Conf. “Hydrogen Materials Science and Chemistry of Carbon Nanomaterials,” Sevastopol, Ukraine (2005), pp. 848–849.
  23. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, et al., Hydrogen in Crystals [in Russian], KIM, Kiev (2017).