Examples



mdbootstrap.com



 
Статья
2021

Molecular structures of heteroligand ScIII complexes with porphyrazine, its dibenzo and tetrabenzo derivatives, and fluoride anion, as determined from DFT calculations


D. V. ChachkovD. V. Chachkov, O. V. MikhailovO. V. Mikhailov
Российский химический вестник
https://doi.org/10.1007/s11172-021-3082-x
Abstract / Full Text

Molecular structure calculations of macrotetracyclic metal complexes containing a scan-dium(III) ion, a macrocyclic (N,N,N,N)-donor ligand (porphyrazine, trans-dibenzoporphyrazine, tetrabenzoporphyrazine), and a F anion were carried out at the OPBE/TZVP level of the density functional theory. The most important bond lengths, bond angles, and non-bond angles in these heteroligand metal complexes were determined. All complexes have distorted tetragonal-pyramidal structures where the complex-forming agent ScIII is above the basal plane formed by the donor nitrogen atoms. The distance between the ScIII atom and the basal plane somewhat decreases in the order porphyrazine—trans-dibenzoporphyrazine—tetrabenzopor-phyrazine. Although all six-membered metal chelate rings in each complex are identical to one another, none of them is planar; on the contrary, all five-membered rings are planar. The standard enthalpies, entropies, and Gibbs energies of formation of the metal complexes in question were determined. Different metal complexes are characterized by different numerical values of the same thermodynamic parameters.

Author information
  • Kazan Department of Joint Supercomputer Center of the Russian Academy of Sciences - Branch of the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”, 2/31 ul. Lobachevskogo, 420111, Kazan, Russian FederationD. V. Chachkov
  • Kazan National Research Technological University, 68 ul. Karla Marksa, 420015, Kazan, Russian FederationO. V. Mikhailov
References
  1. K. Kasuda, M. Tsutsui, Coord. Chem. Revs., 1980, 32, 67; DOI: https://doi.org/10.1016/S0010-8545(00)80370-7.
  2. A. L. Thomas, Phthalocyanines. Research & Applications, CRC Press, Boston, 1990.
  3. W. Sliva, B. Mianovska, Transit. Met. Chem., 2000, 25, 491; DOI: https://doi.org/10.1023/A:1007054025169.
  4. G. M. Mamardashvili, N. Z. Mamardashvili, O. I. Koifman, Russ. Chem. Rev., 2008, 77, 59; DOI: https://doi.org/10.1070/RC2008v077n01ABEH003743.
  5. T. N. Lomova, Aksial’no koordinirovannye metalloporfiriny v nauke i praktike [Axially Coordinate Metalloporphyrins in Science and Practice], URSS—KRASAND, Moscow, 2018, 700 pp. (in Russian).
  6. K. Okada, A. Sumida, R. Inagaki, M. Inamo, Inorg. Chim. Acta, 2012, 392, 473; DOI: https://doi.org/10.1016/j.ica.2012.04.001.
  7. C. Colomban, E. V. Kudric, P. Afanasiev, A. B. Sorokin, J. Am. Chem. Soc., 2014, 136, 11321; DOI: https://doi.org/10.1021/ja505437h.
  8. J. W. Buchler, K. Rohbock, Inorg. Nucl. Chem. Lett., 1972, 8, 1073; DOI: https://doi.org/10.1016/0020-1650(72)80196-X.
  9. R. Guilard, P. Richard, M. El Borai, E. Laviron, J. Chem. Soc., Chem. Commun., 1980, 516; DOI: https://doi.org/10.1039/C39800000516.
  10. C. Lecomte, J. Protas, P. Richard, J.-M. Barbe, R. Guilard, J. Chem. Soc., Dalton Trans., 1982, 247; DOI: https://doi.org/10.1039/DT9820000247.
  11. P. A. Stuzhin, M. Yu. Goryachev, S. S. Ivanova, A. Nazarova, I. Pimkov, O. I. Koifman, J. Porphyrins Phthalocyanines, 2013, 17, 905; DOI: https://doi.org/10.1142/S1088424613500892.
  12. P. A. Stuzhin, S. S. Ivanova, O. I. Koifman, O. A. Petrov, A. Nazarova, Inorg. Chem. Commun., 2014, 49, 72; DOI: https://doi.org/10.1016/j.inoche.2014.09.002.
  13. I. A. Yablokova (Lebedeva), S. S. Ivanova, V. Novakova, P. A. Stuzhin, J. Fluorine Chem., 2018, 214, 86; DOI: https://doi.org/10.1016/j.jfluchem.2018.08.006.
  14. S. S. Ivanova, I. A. Lebedeva, P. A. Stuzhin, Russ. Chem. Bull., 2018, 67, 2246; DOI: https://doi.org/10.1007/s11172-018-2363-5.
  15. O. V. Mikhailov, D. V. Chachkov, Russ. J. Inorg. Chem., 2020, 65, 887; DOI: https://doi.org/10.1134/S003602362006011X.
  16. M. O. Barsukova, S. A. Sapchenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Rev., 2018, 87, 1139; DOI: https://doi.org/10.1070/RCR4826.
  17. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2013, 58, 174; DOI: https://doi.org/10.1134/S0036023613020186.
  18. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2015, 60, 1117; DOI: https://doi.org/10.1134/S0036023615090065.
  19. O. V. Mikhailov, D. V. Chachkov, Russ. J. Inorg. Chem., 2015, 60, 1354; DOI: https://doi.org/10.1134/S003602361511011X.
  20. O. V. Mikhailov, D. V. Chachkov, Russ. Chem. Bull., 2020, 69, 893; DOI: https://doi.org/10.1007/s11172-020-2846-z.
  21. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; DOI: https://doi.org/10.1063/1.463096.
  22. A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; DOI: https://doi.org/10.1063/1.467146.
  23. W.-M. Hoe, A. Cohen, N. C. Handy, Chem. Phys. Lett., 2001, 341, 319; DOI: https://doi.org/10.1016/S0009-2614(01)00581-4.
  24. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.
  25. H. Paulsen, L. Duelund, H. Winkler, H. Toftlund, A. X. Trautwein, Inorg. Chem., 2001, 40, 2201; DOI: https://doi.org/10.1021/ic000954q.
  26. M. Swart, A. R. Groenhof, A. W. Ehlers, K. Lammertsma, J. Phys. Chem. A., 2004, 108, 5479; DOI: https://doi.org/10.1021/jp049043i.
  27. M. Swart, A. W. Ehlers, K. Lammertsma, Mol. Phys., 2004, 102, 2467; DOI: https://doi.org/10.1080/0026897042000275017.
  28. M. Swart, Inorg. Chim. Acta, 2007, 360, 179; DOI: https://doi.org/10.1016/j.ica.2006.07.073.
  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.
  30. J. W. Ochterski, Thermochemistry in Gaussian, Gaussian, Inc., Wallingford CT, 2000.