Examples



mdbootstrap.com



 
Статья
2020

Polymer stabilizer effect on the nickel-copper ferrite ability to reduction


N. M. IvanovaN. M. Ivanova, E. A. SobolevaE. A. Soboleva, Ya. A. VisurkhanovaYa. A. Visurkhanova
Российский химический вестник
https://doi.org/10.1007/s11172-020-2919-z
Abstract / Full Text

The effect of polymers (polyvinyl alcohol, polyvinylpyrrolidone) involved in the synthesis of nickel-copper ferrite Ni0.5Cu0.5Fe2O4 on its phase composition changing under heawt (500–900 °C) and electrochemical reduction was investigated. Electrocatalytic activity of various levels of Fe-Cu-Ni-composites formed by the reduction of the mixed ferrite samples was established. An influence of heat treatment temperature on their electrocatalytic activity in the electrohydrogenation of acetophenone was studied.

Author information
  • Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 ul. Alikhanova, 100008, Karaganda, KazakhstanN. M. Ivanova, E. A. Soboleva & Ya. A. Visurkhanova
References
  1. B. I. Kharisov, H. V. R. Dias, O. V. Kharisova, Arabian J. Chem., 2014, 12, 1234.
  2. A. S. Albuquerque, M. V. C. Tolentino, J. D. Ardisson, F. C. C. Moura, R. Mendonca, W. Macedo, Ceram. Int., 2012, 38, 2225.
  3. A. Dandia, R. Singh, J. Joshi, S. Maheshwari, Eur. Chem. Bull., 2013, 2, 825.
  4. A. V. Nakhate, G. D. Yadav, Chem. Select, 2017, 2, 2395.
  5. S. Zhang, D. Zhao, C. Hou, C. Liang, H. Li, J. Nanopart. Res., 2018, 20, 161.
  6. M. Bomio, P. Lavela, J. L. Tirado, J. Solid State Electrochem., 2008, 12, 729.
  7. K. M. R. Karim, H. R. Ong, H. Abdullah, A. Yousuf, C. K. Cheng, M. K. R. Khan, Bull. Chem. React. Eng. & Catal., 2018, 13, 236.
  8. D. M. Audi, Res. J. Chem. Sci., 2017, 7, 6.
  9. M. M. L. Sonia, S. Blessi, S. Pauline, Int. J. Res., 2014, 1, 1051.
  10. R. K. Selvan, C. O. Augustin, L. J. Berchmans, R. Saraswathi, Mater. Res. Bull., 2003, 38, 41.
  11. A. Sutka, G. Mezinskis, Front. Mater. Sci., 2012, 6, 128.
  12. J. Azadmanjiri, H. K. Salehani, M. R. Barati, F. Farzan, Mater. Lett., 2007, 61, 84.
  13. R. P. Sharma, S. D. Raut, R. M. Mulani, A. S. Kadam, R. S. Mane, Int. Nano Lett., 2019, 9, 141.
  14. L. B. Zakiyah, E. Saion, N. M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, S. Gene, Mater. Sci. Semicond. Proc., 2015, 40, 564.
  15. M. G. Naseri, E. B. Saion, H. A. Ahangar, A. H. Shaari, Mater. Res. Bull., 2013, 48, 1439.
  16. X. Wu, Z. Ding, W. Wang, N. Song, S. Khaimanov, N. Tsidaeva, Powder Technol., 2016, 295, 59.
  17. G. R. Kumar, K. V. Kumar, Y. C. Venudhar, Mater. Sci. Appl., 2012, 3, 87.
  18. I. V. Lisnevskaya, I. A. Bobrova, A. V. Petrova, T. G. Lupeiko, Russ. J. Inorg. Chem., 2012, 57, 474.
  19. Y. L. N. Murthy, I. V. K. Viswanath, T. K. Rao, R. Singh, Int. J. ChemTech Res., 2009, 1, 1308.
  20. S. Kameoka, T. Tanabe, A. P. Tsai, Appl. Cat. A: General, 2010, 375, 163.
  21. H. C. Shin, K.-D. Jung, S.-H. Han, J. W. Kim, J. Ceram. Proc. Res., 2003, 4, 30.
  22. M. Estrella, L. Barrio, G. Zhou, X. Wang, Q. Wang, W. Wen, J. C. Hanson, A. I. Frenkel, J. A. Rodriguez, J. Phys. Chem. C, 2009, 113, 14411.
  23. S. Jiaowen, D. W. Kim, S. B. Kim, Y. M. Jo, Korean J. Chem. Eng., 2016, 33, 3162.
  24. M. Bahgat, M.-K. Paek, J.-J. Pak, Mater. Transact., 2007, 48, 3132.