Статья
2017

Research on the performance of tubular cathode for direct ethanol fuel cell


Dong Tang Dong Tang , Cen Zhao Cen Zhao , Zehong Zhu Zehong Zhu , Songhua Wang Songhua Wang , Xifan Wang Xifan Wang , Jianfei Wei Jianfei Wei
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517050147
Abstract / Full Text

Through the gel-casting process, the tubular cathode for direct ethanol fuel cell (DEFC) is prepared using the mesocarbon microbeads (MCMB) and graphite as the main raw materials. According to the tubular cathode’s physical performance and electrical property tests, the performance of cathode tube is studied at different graphite proportions. As shown by the results of strength test, the strength of cathode tube is better with a graphite ratio from 0 to 40%. It can be found that the linear and volumetric shrinkage of tubular cathode support will decrease with the increment of the graphite content. As displayed by the electrical property tests, the charge transmission ability is extremely close when the graphite surpasses 30%. With 40% of graphite doping ratio, the electrode electrochemical reaction will be reinforced when the temperature gets higher. In the meanwhile, the electricity capacity will be higher when the air flow rate is 100 mL min–1.

Author information
  • School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China

    Dong Tang, Cen Zhao, Zehong Zhu, Songhua Wang, Xifan Wang & Jianfei Wei

References
  1. Azra, G., Li, G.C., and Bennett, D.V., J. Power Sources, 2009, vol. 194, p. 286.
  2. Wang, Z.B., Yin, G.P., and Lin, Y.G., J. Power Sources, 2007, vol. 170, p. 242.
  3. Antolini, E. and Gonzalez, E.R., J. Power Sources, 2010, vol. 195, p. 3431.
  4. Kang, Y.Y., Ren, M.J., and Zhou, Z.Q., Cell, 2010, vol. 40, p. 184.
  5. Shao, Z.G., Lin, W.F., and Zhu, F.Y., J. Power Sources, 2006, vol. 160, p. 1003.
  6. Shao, Z.G., Lin, W.F., and Zhu, F.Y., Electrochem. Commun., 2006, vol. 8, p. 5.
  7. Shao, Z.G., Lin, W.F., and Christensen, P.A., Int. J. Hydrogen Energy, 2006, vol. 31, p. 1914.
  8. Yu, R.J., Liu, X.Q., and Wang, J., CN Patent 03217133.1, 2004.
  9. Yu, R.J., Cao, G.Y., and Liu, X.Q., Chin. J. Power Sources, 2005, vol. 29, p. 427.
  10. Kentaro, I., Tatsuhiro, O., and Masayoshi, I., Electrochemistry, 2002, vol. 70, p. 975.
  11. Chetty, R. and Scott, K., Electrochim. Acta, 2007, vol. 52, p. 4073.
  12. Yasuaki, T., Satoru, S., and Katsuyuki, K., US Patent 0539577, 2007.
  13. Ni, H.J., Li, F., and Dong, T., J. Shanghai Jiao Tong Univ., 2008, vol. 42, p. 2047.
  14. Tang, D., Hou, Q.H., and Ni, H.J., J. Jiangsu Univ (Nat. Sci. Ed.), 2009, vol. 30, p. 366.
  15. Ni, H.J., Wang, X.X., and Tang, D., J. Jiangsu Univ. (Nat. Sci. Ed.), 2010, vol. 31, p. 558.
  16. Tang, H., Chen, J.H., and Huang, Z.P., Carbon, 2004, vol. 42, p. 191.
  17. Wang, M.Y., MSc Thesis, Hunan, China: Hunan University, 2005.