Examples



mdbootstrap.com



 
Статья
2018

Hydrogen Evolution on Catalytically Active Electrodeposited Ni–Re Alloy: Electrochemical Impedance Study


V. V. Kuznetsov V. V. Kuznetsov , Yu. D. Gamburg Yu. D. Gamburg , R. S. Batalov R. S. Batalov , V. V. Zhulikov V. V. Zhulikov , V. A. Zaitsev V. A. Zaitsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518070054
Abstract / Full Text

Hydrogen evolution reaction on the catalytically active Ni–Re alloy is studied by the method of electrochemical impedance. The alloy was fabricated by the electrodeposition from the ammonium—citrate solutions. The experiments were performed in the 0.1 M sodium hydroxide solution. Based on the analysis of equivalent circuits, it is found that the absorption of hydrogen atoms on the Ni–Re cathode is controlled by diffusion. The parameters of structural elements of equivalent electric circuits are calculated, and the effect of cathodic overpotential on these parameters is analyzed.

Author information
  • Mendeleev University of Chemical Technology, Moscow, 125047, Russia

    V. V. Kuznetsov, R. S. Batalov & V. A. Zaitsev

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    Yu. D. Gamburg & V. V. Zhulikov

References
  1. McCrory, Ch.C.L., Jung, S., Ferrer, I.M., Chatman, Sh.M., Peters, J.C., and Jaramillo, T.F., Benchmarking HER and OER electrocatalysts for solar water splitting devices, J. Amer. Chem. Soc, 2015, vol. 137, p. 4347, doi 10.1021/ja510442p
  2. Nikolic, V.M., Maslovara, S.Lj., Tasic, G.S., Brdaric, T.P., Lausevic, P.Z., Radak, B.B., and Kaninski, M.P.M., Kinetics of hydrogen evolution reaction in alkaline electrolysis on a Ni cathode in the presence of Ni–Co–Mo based ionic activators, Appl. Catal. B: Environmental, 2015, vol. 179, p. 88, doi 10.1016/j.apcatb.2015.05.012
  3. Safizadeh, F., Ghali, E., and Houlachi, G., Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—A Review, Int. J. Hydr. Energy, 2015, vol. 40, p. 256, doi 10.1016/j.ijhydene.2014.10.109
  4. Kuznetsov, V.V., Gamburg, Yu.D., Zhalnerov, M.V., Zhulikov, V.V., and Batalov, R.S., Reaction of hydrogen evolution on Co–Mo (W) and Ni–Re electrolytic alloys in alkaline media, Russ. J. Electrochem., 2016, vol. 52, p. 1011, doi 10.7868/S0424857016090061
  5. Jakšic M. M., Electrocatalysis of hydrogen evolution in the light of the Brenner-Engel theory for bonding in metals and intermetallic phases, Electrochim. Acta, 1984, vol. 29, p. 1539, doi 10.1016/0013-4686(84)85007-0
  6. Paloukis, F., Zafeiratos, S., Drakopoulos, V., and Neophytides, S.G., Electronic structure modifications and HER of annealed electrodeposited Ni overlayers on Mo polycrystalline surface, Electrochim. Acta, 2008, vol. 53, p. 8015, doi 10.1016/j.electacta.2008.05.045
  7. Trasatti, S., Electrochemical theory. Hydrogen evolution, in reference module in chemistry, molecular sciences and chemical engineering, in Encyclopedia of Electrochemical Power Sources, Reedijk, J., Ed., Amsterdam: Elsevier, 2009, p. 41, doi 10.1016/B978-044452745-5.00022-8
  8. Petrii, O.A. and Tsirlina, G.A., Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science, Electrochim. Acta, 1994, vol. 39, p. 1739, doi 10.1016/0013-4686(94)85159-X
  9. Elezovic, N.R., Jovic, V.D., and Krstajic, N.V., Kinetics of hydrogen evolution reaction on Fe—Mo film deposited on mild steel support in alkaline solution, Electrochim. Acta, 2005, vol. 50, p. 5594, doi 10.1016/j.electacta.2005.03.037
  10. Kichigin, V.I. and Shein, A.B., Investigation of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction, Electrochim. Acta, 2016, vol. 201, p. 233, doi 10.1016/j.electacta.2016.03.194
  11. Amokrane, N., Gabrielli, C., Ostermann, E., and Perrot, H., Investigation of hydrogen adsorption—absorption on iron by EIS, Electrochim. Acta, 2007, vol. 53, p. 700, doi 10.1016/j.electacta.2007.07.047
  12. Lasia, A., On the mechanism of hydrogen absorption reaction, J. Electroanal. Chem., 2006, vol. 593, p. 159, doi 10.1016/j.jelechem.2006.03.049
  13. Lasia, A., Electrochemical Impedance Spectroscopy and Its Applications, New York: Springer, 2014, 367 p, doi 10.1007/978-1-4614-8933-7
  14. Kuznetsov, V.V., Golyanin, K.E., Ladygina, Yu.Sh., Pshenichkina, T.V., Lyakhov, B.F., and Pokholok, K.V., Elecrodeposition of iron–molydenum alloy from ammonium–citrate solutions and properties of produced materials, Russ. J. Electrochem., 2016, vol. 52, p. 1011, doi 10.7868/S0424857015080071
  15. Kichigin, V.I. and Shein, A.B., Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy, Electrochim. Acta, 2014. vol. 138. p. 325, doi 10.1016/j.electacta.2014.06.114
  16. Stoynov, Z.B., Grafov, B.M., Savova-Stoynova, B., and Elkin, V.V., Electrochemical Impedance, Moscow, Nauka, 1991.
  17. Kim, C.-H., Pyin, S.-I., and Kim, J.-H., An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochim. Acta, 2003, vol. 48, p. 3455, doi 10.1016/S0013-4686(03)00464-X
  18. Fan, C., Piron, D.L., Sleb, A., and Paradis, P., Study of electrodeposited nickel−molybdenum, nickel−tungsten, cobalt−molybdenum, and cobalt−tungsten as hydrogen electrodes in alkaline water electrolysis, J. Electrochem. Soc., 1994, vol. 141, p. 382, doi 10.1149/1.2054736