Iridium–nickel composite oxide catalysts for oxygen evolution reaction in acidic water electrolysis

Shuai Xu Shuai Xu , Yuan Liu Yuan Liu , Jinlin Tong Jinlin Tong , Wei Hu Wei Hu , Qinghua Xia Qinghua Xia
Российский электрохимический журнал
Abstract / Full Text

A series of Ir1–x Ni x O2–y (0 ≤ x ≤ 0.5) composite oxides have been prepared by a simple pyrolysis method in ethanol system and used as the electrocatalysts for OER in acidic medium. The materials have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The electrochemical performances of these Ir1–x Ni x O2–y composite catalysts are evaluated by cyclic voltammetry (CV) and steady-state measurements. The resulting oxides with the Ni content (x) less than 0.3 have a complex nature of metal Ir and rutile structure IrO2 which is similar to the Ir oxide prepared by the same approach and possess the contracted lattice resulted from the Ni-doping. Although the addition of Ni reduces the electroactive surface areas due to the coalescence of particles, the catalytic activity of the Ir1–x Ni x O2–y (0 < x ≤ 0.3) catalysts is slightly higher than that of the pyrolyzed Ir oxide. Regardless of the surface area difference, the intrinsic activity first increases and then decreases with the Ni content in Ir1–x Ni x O2–y catalysts, and the intrinsic activity of Ir0.7Ni0.3O2–y catalyst is about 1.4 times of the Ni-free Ir oxide mainly attributed to the enhancement of conductivity and a change of the binding energy as increasing amount of the incorporated Ni with respect to the pure IrO2. The Ir0.7Ni0.3O2–y catalyst shows a prospect of iridium-nickel oxide materials in reducing the demand of the expensive Ir oxide catalyst for OER in acidic water electrolysis.

Author information
  • Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, China

    Shuai Xu, Yuan Liu, Jinlin Tong, Wei Hu & Qinghua Xia

  1. Sardar, K., Ball, S.C., and Sharman, J.D.B., Chem. Mater., 2012, vol. 24, p. 4192.
  2. Parrondoa, J., Argesa, C.G., and Niedzwieckib, M., RSC Adv., 2014, vol. 4, p. 9875.
  3. Antolini, E., ACS Catal., 2014, vol. 4, p. 1426.
  4. Chen, C.A., Chen, Y.M., and Huang, Y.S., Nanotechnology, 2008, vol. 19, p. 465607.
  5. Youngmin, L., Jin, S., and Kevin, J.M., J. Phys. Chem. Lett., 2012, vol. 3, p. 399.
  6. Cherevko, S., Reier, T., and Zeradjanin, A.R., J. Electrochem. Commun., 2014, vol. 48, p. 81.
  7. Sanchez-Casalongue, H.G., Ng, M.L., and Kaya, S., Angew. Chem. Int. Ed., 2014, vol. 53, p. 7169.
  8. Grigoriev, S.A., Dzhus, K.A., and Bessarabov, D.G., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20440.
  9. Hu, W., Chen, S.L., and Xia, Q.H., Int. J. Hydrogen Energy, 2014, vol. 39, p. 6967.
  10. Klink, M.J., Makgae, M.E., and Crouch, A.M., Mater. Chem. Phys., 2010, vol. 124, p. 73.
  11. Roy, N., Sohn, Y., and Leung, K.T., J. Phys. Chem. C, 2014, vol. 118, p. 29499.
  12. Siracusano, S., Van-Dijk, N., and Payne-Johnson, E., Appl. Catal. B: Environmental, 2015, vol. 164, p. 488.
  13. Owe, L.E., Tsypkin, M., and Wallwork, K.S., Electrochim. Acta, 2012, vol. 70, p. 158.
  14. Xu, L., Xin, Y., and Wang, J., Electrochim. Acta, 2009, vol. 54, p. 1820.
  15. Di-Blasi, A., D’Urso, C., and Baglio, V., J. Appl. Electrochem., 2009, vol. 39, p. 191.
  16. Wang, X.M., Hu, J.M., and Zhang, J.Q., Electrochim. Acta, 2010, vol. 55, p. 4587.
  17. Kadakia, K.S., Jampani, P., and Velikokhatnyi, O.I., J. Electrochem. Soc., 2006, vol. 161, p. F868.
  18. Marshall, A., Børresen, B., and Hagenm, G., Electrochim. Acta, 2006, vol. 51, p. 3161.
  19. Li, G., Yu, H., and Wang, X., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2858.
  20. Li, G., Yu, H., and Wang, X., J. Power Sources, 2014, vol. 249, p. 175.
  21. Murakami, Y., Nakamura, T., and Zhang, X., J. Alloys Compd., 1997, vol. 259, p. 196.
  22. Ichikawa, Masao, U., and Kenta, N., United States Patent, 6,872,2868, 2005-03-29.
  23. Jirkovsky, J., Makarova, M., and Krtil, P., Electrochem. Commun., 2006, vol. 8, p. 1417.
  24. Jirkovsky, J., Hoffmannova, H., and Klementova, M., J. Electrochem. Soc., 2006, vol. 153, p. E111.
  25. Macounová, K., Jirkovský, J., and Makarova, M.V., J. Solid State Electrochem., 2009, vol. 13, p. 959.
  26. Da Silva, L.M., Boodts J.F.C., and De Faria, L.A., Electrochim. Acta, 2001, vol. 46, p. 1369.
  27. Makarová, M., Jirkovský, J., and Klementova, M., Electrochim. Acta, 2008, vol. 53, p. 2656.
  28. Siracusano, S., Baglio, V., and Di Blasi, A., Int. J. Hydrogen Energy, 2010, vol. 35, p. 5558.
  29. Sweeney, C.M., Atamm, K.L., and Brock, S.L., J. Alloys Compd., 2008, vol. 448, p. 122.
  30. Lodi, G. and Battisti, A.D., J. Electroanal. Chem., 1990, vol. 277, p. 139.
  31. Lodi, G., Battisti, A.D., and Benedetti, A., J. Electroanal. Chem., 1988, vol. 256, p. 441.
  32. Nanni, L., Battisti, A.D., and Daolio, S., Mater. Sci. Forum., 1995, vol. 195, p. 133.
  33. Kosova, N.V., Devyatkina, E.T., and Kaichev, V.V., J. Power Sources, 2007, vol. 174, p. 965.
  34. Radmilovic, V., Gasteiger, H.A., and Ross, P.N., J. Catal., 1995, vol. 154, p. 98.
  35. Macounová, K., Makarova, M., and Jirkovský, J., Electrochim. Acta, 2008, vol. 53, p. 6126.
  36. Lee, W.H. and Kim, H., Catal. Commun., 2011, vol. 12, p. 408.
  37. Lyons, M.E.G. and Floquet, S., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 5314.
  38. Fierro, S., Ouattara, L., and Calderon, E.H., Electrochem. Commun., 2008, vol. 10, p. 955.
  39. Hu, W., Wang, Y., and Hu, X., J. Mater. Chem., 2012, vol. 22, p. 6010.
  40. Xu, J.Y., Liu, G.Y., and Li, J.L., Electrochim. Acta, 2012, vol. 59, p. 105.
  41. Ardizzone, S., Fregonara, G., and Trasatti, S., Electrochim. Acta, 1990, vol. 35, p. 263.
  42. Angelinetta, C., Trasatti, S., and Atanasoska, L.D., J. Electroanal. Chem., 1986, vol. 214, p. 535.
  43. Forgie, R., Bugosh, G., Neyerlin, K.C., Liu, Z., and Strasser, P., Electrochem. Solid-State Lett., 2010, vol. 13, p. B36.
  44. Mayousse, E., Maillard, F., and Fouda-Onana, F., Int. J. Hydrogen Energy, 2011, vol. 36, p. 10474.
  45. Da Silva, L.A., Alves, V.A., and Da Silva, M.A.P., Can. J. Chem., 1997, vol. 75, p. 1483.
  46. Reier, T., Oezaslan, M., and Strasser, P., ACS Catal., 2012, vol. 2, p. 1765.
  47. Damjanovic, A., Dey, A., and Bockris, J.O.M., Electrochim. Acta, 1996, vol. 11, p. 791.
  48. Bockris, J.O. and Otagawa, T., J. Phys. Chem., 1983, vol. 87, p. 2960.
  49. Da Silva, L.A., Alves, V.A., and Trasatti, S., J. Electroanal. Chem., 1997, vol. 427, p. 97.
  50. De Pauli, C.P., and Trasatti, S., J. Electroanal. Chem., 2002, vol. 538–539, p. 145.
  51. Krstaji, N. and Trasatti, S., J. Appl. Electrochem., 1998, vol. 28, p. 1291.