Examples



mdbootstrap.com



 
Статья
2021

Effect of Preparation Parameters on Microstructure of Ni0.8Co0.1Mn0.1(OH)2 Precursors


Xianzhong QinXianzhong Qin, Feipeng CaiFeipeng Cai, Bo JiangBo Jiang, Bo WangBo Wang, Guilin JiangGuilin Jiang
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421100277
Abstract / Full Text

The electrochemical performance of \({\text{LiN}}{{{\text{i}}}_{x}}{\text{C}}{{{\text{o}}}_{y}}{\text{M}}{{{\text{n}}}_{{1 - x - y}}}{{{\text{O}}}_{2}}\) materials largely depend on the quality of precursor. Co-precipitation is an effective way to attain an excellent morphology, particle size and distribution of \({\text{N}}{{{\text{i}}}_{x}}{\text{C}}{{{\text{o}}}_{y}}{\text{M}}{{{\text{n}}}_{{1 - x - y}}}{{({\text{OH}})}_{2}}\) particles, which is still a huge challenge in pH regulation of the reaction system to influence supersaturation. Here, Ni0.8Co0.1Mn0.1 (OH)2 precursors were prepared as an example by regulating Ni2+ concentration in the supernatant instead of adjusting pH value, and the effect of preparation process parameters on microstructure of precursor was evaluated quantitatively. Particle size distribution of Ni0.8Co0.1Mn0.1(OH)2 precursor was evaluated from SEM images, and the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials were studied using LAND battery test system. The results showed that more homogeneous particle size distribution was attained in samples prepared by regulating concentration of Ni2+ in supernatant than with pH regulation. Average particle size increased from 4.1 to 5.9 μm, and peak width at half height were 1.37 and 1.16 μm, respectively. Same conclusions could also drawn from standard deviation, peak area and peak height data. Electrochemical data demonstrate that rate capabilities were 206.7, 183.2, 171, 161.8, and 145.5 mA h/g from 0.1 to 10 C, respectively and capacity retention was 86.6% after 100 cycles at 1 C, which were better than the pH regulation progress. These results indicate that regulation of concentration of Ni2+ in supernatant has better performance and is suitable for industrial applications.

Author information
  • Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), 250014, Jinan, ChinaXianzhong Qin, Feipeng Cai, Bo Jiang, Bo Wang & Guilin Jiang
  • School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250014, Jinan, ChinaXianzhong Qin, Feipeng Cai, Bo Jiang, Bo Wang & Guilin Jiang
References
  1. F. Wu, N. Liu, L Chen, Y. F. Su, G. Q. Tan, L. Y. Bao, Q. Y. Zhang, Y. Lu, J. Wang, and S. Chen, Nano Energy 59, 50 (2019)
  2. P. C. Liu, L. Xiao, Y. F. Chen, Y. W. Tang, J. Wu, and H. Chen, J. Alloys Compd. 783, 743 (2019)
  3. S. Simon, B. Lea, P. Hartmann, T. Brezesinski, and J. Janek, ACS Appl. Energy Mater. 3, 2821 (2020)
  4. Y. Liu. W. L. Yao, C. Lei, Q. Zhang, S. W. Zhong, and Z. Q. Yan, Electrochim. Acta, A 166, A1300 (2019)
  5. Y. J. Li, X. H. Hou, Y. Zhou, W. Q. Han, C. Liang, X. Wu, S. F. Wang, and Q. Ru, Energy Technol. 6, 391 (2020).
  6. Q. Li, R. B. Dang, M. M. Chen, Y. L. Lee, Z. B. Hu, and X. L. Xiao, ACS Appl. Mater. Interfaces 10, 17850 (2018).
  7. Y. K. Han, X. J. Shan, G. B. Zhu, Y. Wang, Q. T. Qu, and H. H. Zheng, Electrochem. Acta 329, 47 (2020).
  8. Z. Zheng, X. D. Guo, S. L. Chou, W. B. Hua, H. K. Liu, S. X. Dou, and X. S. Yang, Electrochem. Acta 191, 401 (2016).
  9. Y. Huang, Z. X. Wang, and X. H. Li, Trans. Nonferr. Met. Soc. China 25, 2253 (2015).
  10. S. Li, L. W. Mi, J. J. Zhao, C. C. Yang, J. M. Zhang, W. H. Chen, and Q. Z. Shi, Renewable Sustainable Energy 512, 2028 (2012).
  11. T. Yoshinari, R. Koerver, P. Hofmann, Y. Uchimoto, W. G. Zeier, and J. Janek, ACS Appl. Mater. Interfaces 11, 23244 (2019).
  12. L. Lu, W. P. Zhong, and H. Yang, J. Inorg. Mater. 27, 258 (2012).
  13. Q. H. Zhu, X. Hang, R. C. Zhang, S. J. Geng, and Q. S. Huang, Electrochim. Acta 318, 1 (2019).
  14. L. P. Xu, F. Zhou, J. Z. Kong, Z. G. Chen, and K. M. Chen, Ionics 24, 2261 (2018).
  15. Y. Ding, D. B. Mu, B. R. Wu, Z. K. Zhao, and R. Wang, Ceram. Int. 46, 9436 (2020).
  16. H. B. Zhou, F. Zhou, Y. C. Liu, J. Z. Kong, C. G. Jin, and X. M. Wu, J. Alloys Compd. 816, 1 (2020).
  17. Y. J. Gu, Q. G. Zhang, Y. B. Chen, H. Q. Liu, Y. M. Wang, F. X. Hao, P. Liu, and S. Q. Li, Adv. Mater. Res. 643, 104 (2013).
  18. S. Hashigami, K. Yoshimi, Y. Kato, H. Yoshida, T. Inagaki, M. Haruta, M. Hashinokuchi, and T. M. Inaba, Chem. Sel. 4, 8676 (2019).
  19. M. A. Abdelkawy, M. M. Babatin, and M. Antonio, Comput. Appl. Math. 39, 128 (2019).