Examples



mdbootstrap.com



 
Статья
2020

Thermodynamic Functions of Inulin and Absolute Entropies of Polysaccharides


A. V. KnyazevA. V. Knyazev, A. S. ShipilovaA. S. Shipilova, M. I. LeletM. I. Lelet, S. S. KnyazevaS. S. Knyazeva, E. V. GusarovaE. V. Gusarova, A. A. AmosovA. A. Amosov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024419120148
Abstract / Full Text

In the present work temperature dependence of heat capacity of inulin has been measured for the first time in the range from 5 to 340 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the inulin, namely, the heat capacity, enthalpy H°(T) H°(0), entropy S°(T) S°(0), and Gibbs function G°(T) H°(0) have been determined for the temperature range from T → 0 to 340 K. The value of the fractal dimension D in the function of multifractal generalization of Debye’s theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The composition of inulin was also studied by MALDI-TOF mass spectrometry. The absolute entropies of some polysaccharides are estimated.

Author information
  • Lobachevsky University, 603950, Nizhny Novgorod, RussiaA. V. Knyazev, A. S. Shipilova, M. I. Lelet, S. S. Knyazeva, E. V. Gusarova & A. A. Amosov
References
  1. M. Shoaib, A. Shehzad, M. Omar, A. Rakha, H. Raza, H. R. Sharif, A. Shakeel, A. Ansari, and S. Niazi, Carbohydr. Polym. 147, 444 (2016).
  2. T. Barclay, M. Ginic-Markovic, P. Cooper, and N. Petrovsky, J. Excipients Food Chem. 1, 27 (2010).
  3. A. C. Apolinario, B. P. G. L. Damasceno, N. E. M. Beltrão, A. Pessoa, A. Converti, and J. A. Silva, Carbohydr. Polym. 101, 368 (2014).
  4. A. V. Knyazev, I. A. Letyanina, A. S. Plesovskikh, N. N. Smirnova, and S. S. Knyazeva, Thermochim. Acta 575, 12 (2014).
  5. A. V. Knyazev, N. N. Smirnova, A. S. Shipilova, A. N. Shushunov, E. V. Gusarova, and S. S. Knyazeva, Thermochim. Acta 604, 115 (2015).
  6. A. V. Knyazev, N. N. Smirnova, A. S. Plesovskikh, A. N. Shushunov, and S. S. Knyazeva, Thermochim. Acta 582, 35 (2014).
  7. A. V. Knyazev, V. N. Emel’yanenko, A. S. Shipilova, M. I. Lelet, E. V. Gusarova, S. S. Knyazeva, and S. P. Verevkin, J. Chem. Thermodyn. 100, 185 (2016).
  8. A. V. Knyazev, N. N. Smirnova, A. S. Shipilova, V. N. Larina, E. V. Gusarova, and S. S. Knyazeva, J. Therm. Anal. Calorim. 123, 2201 (2016).
  9. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).
  10. T. S. Yakubov, Dokl. Akad. Nauk 310, 145 (1990).
  11. V. V. Tarasov, Zh. Fiz. Khim. 24, 111 (1950).
  12. A. V. Knyazev, I. G. Tananaev, N. Yu. Kuznetsova, N. N. Smirnova, I. A. Letyanina, and I. V. Ladenkov, Thermochim. Acta 499, 155 (2010).
  13. N. V. Karyakin, N. G. Chernorukov, E. V. Suleimanov, M. I. Alimzhanov, V. L. Trostin, and A. V. Knyazev, Russ. J. Phys. Chem. A 74, 1226 (2000).
  14. N. G. Chernorukov, N. N. Smirnova, A. V. Knyazev, M. N. Marochkina, T. A. Bykova, and A. V. Ershova, Russ. J. Phys. Chem. A 80, 37 (2006).
  15. P. Debye, Ann. Phys. 39, 789 (1912).
  16. J. Boerio-Goates, J. Chem. Thermodyn. 23, 403 (1991).