Synthesis of La3+/Co3O4 Nanoflowers for Sensitive Detection of Chlorpromazine

Somayeh Tajik Somayeh Tajik , Farib Garkani-Nejad Farib Garkani-Nejad , Hadi Beitollahi Hadi Beitollahi
Российский электрохимический журнал
Abstract / Full Text

In this study, a sensitive electrochemical sensor for chlorpromazine was established based on La3+/Co3O4 nanoflower. The La3+/Co3O4 nanoflower exhibited superior electrochemical activity towards the oxidation of chlorpromazine. Electrochemical oxidation of chlorpromazine on the modified electrode was an diffusion-controlled process. Electrochemical oxidation peak currents linearly increased with chlor-promazine concentrations in the range of 0.5 and 400.0 μM. The detection limit was calculated as 0.08 μM. The La3+/Co3O4/GCE allowed to determine the chlorpromazine in real samples. The results indicated that the electrochemical sensor prepared in this study could be a very promising alternative to current analytical methods used to determine chlorpromazine.

Author information
  • Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran

    Somayeh Tajik & Farib Garkani-Nejad

  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    Farib Garkani-Nejad & Hadi Beitollahi

  1. Ensafi, A.A. and Heydari, E., Determination of some phenothiazines compounds in pharmaceuticals and human body fluid by electrocatalytic oxidation at a glassy carbon electrode using methylene blue as a medi ator, Anal. Lett., 2008, vol. 41, p. 2487.
  2. Petković, B.B., Kuzmanović, D., Dimitrijević, T., Krstić, M.P., and Stanković, D.M., Novel strategy for electroanalytical detection of antipsychotic drugs chlorpromazine and thioridazine; possibilities for simultaneous determination, Int. J. Electrochem. Sci., 2017, vol. 12, p. 3709.
  3. Mielech-Łukasiewicz, K., Puzanowska-Tarasiewicz, H., and Panuszko, A., Electrochemical oxidation of phe-nothiazine derivatives at glassy carbon electrodes and their differential pulse and square-wave voltammetric determination in pharmaceuticals, Anal. Lett., 2008, vol. 41, p. 789.
  4. Parvin, M.H., Graphene paste electrode for detection of chlorpromazine, Electrochem. Commun., 2011, vol. 13, p. 366.
  5. Unnikrishnan, B., Pei-Chi, H., and Shen-Ming, C., A multipurpose voltammetric sensor for the determina tion of chlorpromazine in presence of acetaminophen, uric acid, dopamine and ascorbic acid, Int. J. Electro-chem. Sci., 2012, vol. 7, p. 11414.
  6. Ahmadzadeh, S., Karimi, F., Atar, N., Romao-Sartorid, E., Faghih-Mirzaei, E., and Afsharmanesh, E., Synthesis of CdO nanoparticles using direct chemical precipitation method; fabrication of novel voltammetric sensor for square wave voltammetry determination of chlorpromazine in pharmaceutical samples, Inorg. Metal-Org. Nano-Met. Chem., 2016, vol. 47, no. 3. doi 10/1080/15533174.2016.1186049
  7. Liu, Z., Zhang, F., Cui, L., Wang, K., and Zhan, H., Fabrication of a highly sensitive electrochemiluminescence chlorpromazine sensor using a Ru(bpy)3 2+ incor porated carbon quantum dot-gelatin composite film, Anal. Methods, 2017, vol. 9, p. 1011.
  8. Zhang, L., Wu, P., Zhang, Y., Jin, Q., Yang, D., Wang, L., and Zhang, J., A GC/MS method for the simultaneous determination and quantification of chlorpromazine and diazepam in pork samples, Anal. Methods, 2014, vol. 6, p. 503.
  9. Aman, T., Rashid, A., Khokhar, I., and Iqbal, J., Spectrophotometric determination of chlorpromazine, Anal. Lett., 1997, vol. 30, p. 109.
  10. Upadhyay, K., Asthana, A., and Tamrakar, R.K., Sen sitive spectrophotometric method for determination of some phenothiazine drugs, Res. Chem. Intermed., 2015, vol. 41, p. 7481.
  11. Shakir, I.M. and Hammood, M.K., New turbidimetric-continuous flow injection analysis method for the determination of chlorpromazine HCl in pharmaceuti cal preparation using linear array ayah 5SX1-T-1D-CFI analyser, Iraqi J. Sci., 2014, vol. 55, p. 594.
  12. Lara, F.J., Campana, A.M.G., Barrero, F.A., and Sendra, J.M.B., Development and validation of a capillary electrophoresis method for the determination of phenothiazines in human urine in the low nanogram per milliliter concentration range using field amplified sample injection, Electrophoresis, 2005, vol. 26, p. 2418.
  13. Yamini, Y. and Faraji, M., Extraction and determina tion of trace amounts of chlorpromazine in biological fluids using magnetic solid phase extraction followed by HPLC, J. Pharmaceut. Anal., 2014, vol. 4, p. 279.
  14. Purushothama, H.T., Nayaka, Y.A., Vinay, M.M., Manjunatha, P., Yathisha, R.O., and Basavarajappa, K.V., Pencil graphite electrode as electrochemical sensor for the voltammetric determination of chlorpromazine, J. Sci. Adv. Mater. Dev., 2018, vol. 3, no. 2, pp. 161–166. doi 10.1016/j.jsamd.2018.03.007
  15. Palanisamy, S., Thirumalraj, B., Chen, S.M., Wang, Y.T., Velusamy, V., and Ramaraj, S.K., A facile electro chemical preparation of reduced graphene oxidepolydopamine composite: a novel electrochemical sensing platform for amperometric detection of chlorpromazine, Sci. Rep., 2016, vol. 6, p. 33599.
  16. Hajian, A., Rafati, A.A., Afraz, A., and Najafi, M., Electrosynthesis of polythiophene nanowires and their application for sensing of chlorpromazine, J. Electrochem. Soc., 2014, vol. 161, p. B196.
  17. Beitollahi, H., Hamzavi, M., Torkzadeh-Mahani, M., Shanesaz, M., and Karimi-Maleh, H., A novel strategy for simultaneous determination of dopamine and uric acid using a carbon paste electrode modified with CdTe quantum dots, Electroanalysis, 2015, vol. 27, p. 524.
  18. Brett, C.M.A. and Oliveira-Brett, A.M., Electrochem ical sensing in solution-origins, applications and future perspectives, J. Solid State Electrochem., 2011, vol. 15, p. 1487.
  19. Beitollahi, H., Karimi-Maleh, H. and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydroquinazolinyl)-N′-phenylhydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.
  20. Pashai, E., Darzi, G. N., Jahanshahi, M., Yazdian, F., and Rahimnejad, M., An electrochemical nitric oxide biosensor based on immobilized cytochrome c on a chitosan-gold nanocomposite modified gold electrode. Int. J. Biol. Macromol., 2018, vol. 108, p. 250.
  21. Beitollahi, H., Nekooei, S., and Torkzadeh-Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste elec trode, Talanta, 2018, vol. 188, p. 701.
  22. Valange, S., Beauchaud, A., Barrault, J., Gabelica, Z., and Daturi, M., Lanthanum oxides for the selective synthesis of phytosterol esters: correlation between cat alytic and acid-base properties, J. Catal., 2007, vol. 251, p. 113.
  23. Wang, L.G., Ma, Y.B., Wang, Y., Liu, S.M., and Deng, Y.Q., Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst, Catal. Commun., 2011, vol. 12, p. 1458.
  24. Ye, F., Feng, C., Jiang, J., and Han, S., Simultaneous determination of dopamine, uric acid and nitrite using carboxylated graphene oxide/lanthanum modified electrode, Electrochim. Acta, 2015, vol. 182, p. 935.
  25. Zhang, W., Yuan, R., Chai, Y.Q., Zhang, Y., and Chen, S.H., A simple strategy based on lanthanummultiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite, Sens. Actuators B Chem., 2012, vol. 166, p. 601.
  26. Elhag, S., HussainIbupoto, Z., Liu, X., Nur, O., and Willander, M., Dopamine wide range detection sensor based on modified Co3O4 nanowires electrode, Sens. Actuators B-Chem., 2014, vol. 203, p. 543.
  27. Koumoto, K. and Yanagida, H., Electrical conduction in pure and Li substituted Co3O4, Commun. Am. Ceram. Soc., 1981, vol. 64, p. C–156.
  28. Jansson, J., Palmqvist, A.E.C., Fridell, E., Skoglundh, M., Osterlund, L., Thormahlen, P., and Langer, V., On the catalytic activity of Co3O4 in low-temperature CO oxi dation, J. Catal., 2002, vol. 211, p. 387.
  29. Cao, A.M., Hu, J.S., Liang, H.P., Song, W.G., Wan, L.J., He, X.L., Gao, X.G., and Xia, S.H., Hierar chically structured cobalt oxide (Co3O4): the morphol ogy control and its potential in sensors, J. Phys. Chem. B, 2006, vol. 110, p. 15858.
  30. Monk, P.M.S., Mortimer, R.J., and Rosseinsky, D.R., Electrochromism and Electrochromic Devices, Cam bridge Univ. Press, 2007.
  31. Bagheri, H., Arab, S.M., Khoshsafar, H., and Afkhami, A., A novel sensor for sensitive determination of atropine based on a Co3O4-reduced graphene oxide modified carbon paste electrode, New J. Chem., 2015, vol. 39, p. 3875.
  32. Tajik, S., Taher, M.A., and Beitollahi, H., First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor, J. Electroanal. Chem., 2013, vol. 704, p. 137.
  33. Lu, X.C., Song, L., Ding, T.T., Lin, Y.L., and Xu, C.X., CuS-MWCNT based electrochemical sensor for sensitive detection of bisphenol A, Russ. J. Electrochem., 2017, vol. 53, p. 366.
  34. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Application of antibody-nanogold-ionic liquid-carbon paste electrode for sensitive electro chemical immunoassay of thyroid-stimulating hor mone, Biosens. Bioelectron., 2018, vol. 110, p. 97.
  35. Asadian, E., Shahrokhian, S., Iraji-Zad, A., and Ghorbani-Bidkorbeh, F., Glassy carbon electrode modified with 3D grapheme-carbon nanotube network for sensi tive electrochemical determination of methotrexate, Sens. Actuators B-Chem., 2017, vol. 239, p. 617.
  36. Baghayeri, M., Beitollahi, H., Akbari, A., and Farhadi, S., Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of levodopa and tyramine, Russ. J. Electrochem., 2018, vol. 54, p. 292.
  37. Beitollahi, H. and Nekooei, S., Application of a modi fied CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acet aminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.
  38. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., Jahani, Sh., Khabazzadeh, H., and Alizadeh, R., Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochem ical sensor, Russ. J. Electrochem., 2017, vol. 53, p. 452.
  39. Nantaphol, S., Chailapakul, O., and Siangproh, W., Sensitive and selective electrochemical sensor using sil ver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum, Sens. Actuators B Chem., 2015, vol. 207, p. 193.
  40. Beitollahi, H. and Garkani-Nejad, F., Graphene Oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.
  41. Han, L., Tao, H., Huang, M., Zhang, Y., Qiao, S., and Shi, R., A hydrogen peroxide biosensor based on multiwalled carbon nanotubes-polyvinyl butyral film modified electrode, Russ. J. Electrochem., 2016, vol. 52, p. 115.
  42. Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: application for determination of levodopa and cabergoline in human serum, urine and pharma ceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.
  43. Wang, Y., Wang, S., Tao, L., Min, Q., Xiang, J., Wang, Q., Xie, J., Yue, Y., Wu, S., Li, X., and Ding, H., A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode, Biosens. Bioelectron., 2015, vol. 65, p. 31.
  44. Jahani, Sh. and Beitollahi, H., Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets mod ified screen-printed electrodes, Electroanalysis, 2016, vol. 28, p. 2022.
  45. Idris, A.O., Mafa, J.P., Mabuba, N., and Arotiba, O.A., Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water, Russ. J. Electrochem., 2017, vol. 53, p. 170.
  46. Molaakbari, E., Mostafavi, A., and Beitollahi, H., Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine, Sens. Actu ators B, 2015, vol. 208, p. 195.
  47. Xu, J., Huo, F., Zhao, Y., Liu, Y., Yang, Q., Cheng, Y., Min, S., Jin, Z., and Xiang, Z., In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen gen eration, Int. J. Hydrog. Energy, 2018, vol. 43, p. 8674.
  48. Khorasani-Motlagh, M., Noroozifar, M., and Jahani, Sh., Preparation and characterization of nano-sized mag netic particles LaCoO3 by ultrasonic-assisted coprecipitation method, Synth. React. Inorg. Met. Org. Chem., 2015, vol. 45, p. 1591.
  49. Bard, A.J. and Faulkner, L.R., Electrochemical Meth ods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.