Effects of peak current density on the structure and property of PbO2–CeO2 nanocomposite electrodes prepared by pulse electrodeposition

Yingwu Yao Yingwu Yao , Haishu Dong Haishu Dong , Naichuan Yu Naichuan Yu , Xin Chen Xin Chen , Limiao Jiao Limiao Jiao , Chunmei Zhao Chunmei Zhao
Российский электрохимический журнал
Abstract / Full Text

PbO2–CeO2 nanocomposite electrodes were prepared by pulse electrodeposition method in the lead nitrate solution containing CeO2 nanoparticles with different peak current density. The content of CeO2 nanoparticles in the electrodes increase with the increase of peak current density. The effects of peak current density on the morphology and structure of PbO2–CeO2 nanocomposite electrodes were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the increase of peak current density can make the morphology finer and more compact, and the crystal size decreases with the increase of peak current density. The oxygen evolution overpotential and stability of PbO2–CeO2 nanocomposite electrodes enhance with the increase of peak current density. The electrocatalytic property of PbO2–CeO2 nanocomposite electrodes was examined for the electrochemical oxidation of rhodamine B (RhB). The results show that the RhB removal efficiency on PbO2–CeO2 nanocomposite electrodes increase with the increase of peak current density, which can be attributed to the higher oxygen evolution overpotential and CeO2 content in the composite electrodes.

Author information
  • Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, China

    Yingwu Yao, Haishu Dong, Naichuan Yu, Xin Chen, Limiao Jiao & Chunmei Zhao

  1. Egan, D.R.P., Low, C.T.J., and Walsh, F.C., J. Power Sources, 2011, vol. 196, p. 5725.
  2. Shmychkova, O., Luk’yanenko, T., Velichenko, A., Meda, L., and Amadelli, R., Electrochim. Acta, 2013, vol. 111, p. 332.
  3. Moncada, A., Mistretta, M.C., Randazzo, S., Piazza, S., Sunseri, C., and Inguanta, R., J. Power Sources, 2014, vol. 256, p. 72.
  4. Ghasemi, S., Mousavi, M.F., Karami, H., Shamsipur, M., and Kazemi, S.H., Electrochim. Acta, 2006, vol. 52, p. 1596.
  5. Amadelli, R., Samiolo, L., De Battisti, A., and Velichenko, A.B., J. Electrochem. Soc., 2011, vol. 158, p. P87.
  6. Lubenov, L., Bojinov, M., and Tzvetkoff, T., J. Solid State Electrochem., 2007, vol. 11, p. 1613.
  7. Abaci, S., Tamer, U., Pekmez, K., and Yildiz, A., Electrochim. Acta, 2005, vol. 50, p. 3655.
  8. Cerro-Lopez, M., Meas-Vong, Y., Méndez-Rojas, M.A., Martínez-Huitle, C.A., and Quiroz, M.A., Appl. Catal. B: Environ., 2014, vol. 144, p. 174.
  9. Weiss, E., Groenen-Serrano, K., and Savall, A., J. Appl. Electrochem., 2008, vol. 38, p. 329.
  10. Hmani, E., Samet, Y., and Abdelhédi, R., Diam. Relat. Mater., 2012, vol. 30, p. 1.
  11. Aquino, J.M., Pereira, G.F., Rocha-Filho, R.C., Bocchi, N., and Biaggio, S.R., J. Hazard Mater., 2011, vol. 192, p. 1275.
  12. Panizza, M. and Martinez-Huitle, C.A., Chemosphere, 2013, vol. 90, p. 1455.
  13. Devilliers, D. and Mahé, E., Electrochim. Acta, 2010, vol. 55, p. 8207.
  14. Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., Velichenko, Y.A., and Devilliers, D., Mater. Chem. Phys., 2012, vol. 131, p. 686.
  15. Yao, Y.W., Zhao, C.M., and Zhu, J., Electrochim. Acta, 2012, vol. 69, p. 146.
  16. Musiani, M., Furlanetto, F., and Bertoncello, R., J. Electroanal. Chem., 1999, vol. 465, p. 160.
  17. Musiani, M. and Guerriero, P., Electrochim. Acta, 1998, vol. 44, p. 1499.
  18. Dan, Y.Y., Lu, H.Y., Liu, X.L., Lin, H.B., and Zhao, J.Z., Int. J. Hydrogen Energy, 2011, vol. 36, p. 1949.
  19. Amadelli, R., Samiolo, L., Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., and Danilov, F.I., Electrochim. Acta, 2009, vol. 54, p. 5239.
  20. Yao, Y.W., Li, Y., Cui, L.H., Yu, N.C., and Dong, H.S., J. Electrochem. Soc., 2015, vol. 162, p. E7.
  21. Velichenko, A.B., Amadelli, R., Knysh, V.A., Luk’yanenko, T.V., and Danilov, F.I., J. Electroanal. Chem., 2009, vol. 632, p. 192.
  22. Liu, Y., Liu, H.L., Ma, J., and Li, J.J., J. Hazard Mater., 2012, vol. 213–214, p. 222.
  23. Yao, Y.W., Jiao, L.M., Cui, L.H., Yu, N.C., Wei, F., and Lu, Z. M., J. Electrochem. Soc., 2015, vol. 162, p. H693.
  24. Mirali, S.M., Jafarzadeh, K., and Mirjani, M., Trans. Inst. Met. Finish, 2015, vol. 93, p. 24.
  25. Yu, N.F. and Gao, L.J., Electrochem. Commun., 2009, vol. 11, p. 220.
  26. Vatistas, N. and Cristofaro, S., Electrochem. Commun., 2000, vol. 2, p. 334.
  27. Tan, C., Xiang, B., Li, Y.J., Fang, J.W., and Huang, M., Chem. Eng. J., 2011, vol. 166, p. 15.
  28. Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., Devilliers, D., and Danilov, F.I., Russ. J. Electrochem., 2008, vol. 44, p. 1251.
  29. Yao, Y.W., Yao, S.W., Zhang, L., and Wang, H.Z., Mater. Lett., 2007, vol. 61, p. 67.
  30. Li, Y.D., Jiang, H., Huang, W.H., and Tian, H., Appl. Surf. Sci., 2008, vol. 254, p. 6865.
  31. Song, Y.H., Wei, G., and Xiong, R.C., Electrochim. Acta, 2007, vol. 52, p. 7022.
  32. Shmychkova, O., Luk’yanenko, T., Amadelli R., and Velichenko A., J. Electroanal. Chem., 2014, vol. 717–718, p. 196.
  33. Shmychkova, O., Luk’yanenko, T., Amadelli, R., and Velichenko, A., J. Electroanal. Chem., 2013, vol. 706, p. 86.
  34. Jao, J.W., Ju, N.C., Ziao, L.M., and Zhao, C.M., Russ. J. Electrochem., 2016, vol. 52, p. 163.
  35. Cao, J.L., Zhao, H.Y., Cao, F.H., and Zhang, J.Q., Electrochim. Acta, 2007, vol. 52, p. 7870.