Examples



mdbootstrap.com



 
Статья
2022

Synthesis and Some Properties of Tungstophosphatozincates and Their Thermolysis Products


Ya. A. MorozYa. A. Moroz, N. S. LozinskyyN. S. Lozinskyy, A. N. LopanovA. N. Lopanov, K. A. ChebyshevK. A. Chebyshev
Российский журнал общей химии
https://doi.org/10.1134/S1070363222010145
Abstract / Full Text

Tungstophosphatozincates with the Keggin anion structure Kt5[PW11O39Zn(H2O)]∙nH2O, Kt = Rb+, Cs+, (CH3)4N+; (C2H5)4N+ were synthesized. Their thermolysis process was studied by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, X-ray diffraction analysis and electron microscopy. The products of their thermal decomposition, phases with the pyrochlore structure and tungsten bronzes, were identified.

Author information
  • L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, 83114, Donetsk, UkraineYa. A. Moroz & N. S. Lozinskyy
  • V.G. Shukhov Belgorod State Technological University, 308012, Belgorod, RussiaA. N. Lopanov
  • Donetsk National University, 83055, Donetsk, UkraineK. A. Chebyshev
References
  1. Polyoxometalates in Catalysis, Biology, Energy and Materials Science, Roy, S., Crans, D.C., and ParacVogt, T.N., Eds., Lausanne: Frontiers Media SA, 2019. https://doi.org/10.3389/978-2-88963-233-6
  2. Nikoloudakis, E., Karikis, K., Laurans, M., Kokotidou, C., Solé-Daura, A., Carbó, J.J., Charisiadis, A., Charalambidis, G., Izzet, G., Mitraki, A., Douvas, A.M., Poblet, J.M., Proust, A., and Coutsolelos, A.G., Dalton Trans., 2018, vol. 47, p. 6304. https://doi.org/10.1039/c8dt00380g
  3. Segado Centellas M.; Piot, M., Salles, R., Proust, A., Tortech, L., Brouri, D., Hupin, S., Abécassis, B., Landy, D., Bo, C., and Izzet, G., Chem. Sci., 2020, vol. 11, p. 11072.
  4. Liu, O. and Wang, X., Matter., 2020, vol. 2, p. 816.
  5. Cherednichenko, L.A. and Moroz, Y.A., Kinet. Catal., 2018, vol. 59, no. 5, p. 572. https://doi.org/10.1134/S0023158418050038
  6. Zhao, S., Zhao, X., Zhang, H., Li, J., and Zhu, Y., Nano Energy, 2017, vol. 35, p. 405.
  7. Patel, A., Narkhede, N., Singh, S., and Pathan, S., Cat. Rev. Sci. Eng., 2016, vol. 58, no. 3, p. 337. https://doi.org/10.1080/01614940.2016.1171606
  8. Coronel, N.C., da Silva, M.J., Ferreira, S.O., da Silva, R.C., and Natalino, R., Chem. Select., 2019, vol. 4, no. 1, p. 302. https://doi.org/10.1002/slct.201802616
  9. Lang, Z., Miao, J., Lan Y. Xu, X., and Cheng, C., APL Mater., 2020, vol. 8, p. 120702. https://doi.org/10.1063/5.0031374
  10. Torlak, Y., J. Turk. Chem. Soc. (A), 2018, vol. 5, no. 3, p. 1169. https://doi.org/10.18596/jotcsa.420009
  11. Iliyas, Z., Ma, J., Li, L., Liang, C., Li, H., Hua, Y., and Wang, C., Funct. Mater. Lett., 2020, vol. 13, no. 5, p. 2051022. https://doi.org/10.1142/S1793604720510224
  12. Han, L., Liu, X., Wang, X., Jiang, X., You, C., Liu, X., Li, Y., Hua, Y., and Wang, C., J. Solid State Electrochem., 2018, vol. 22, p. 237. https://doi.org/10.1007/s10008-017-3734-9
  13. Guillén-López, A., Espinosa-Torres, N., CuentasGallegos, A.K., Robles, M., and Muñiz, J., Carbon, 2018, vol. 130, p. 623. https://doi.org/10.1016/j.carbon.2018.01.043
  14. Allmen, K., Moré, R., Müller, R., Soriano-López, J., Linden, A., and Patzke, G.R., ChemPlusChem., 2015, vol. 80, p. 1389. https://doi.org/10.1002/cplu.201500074
  15. Zhang, Y.M., An, Ch.W., Zhang, D.F., Liu, T., Yan, J.S., and Zhang, J., Russ. J. Inorg. Chem., 2021, vol. 66, no. 5, p. 679. https://doi.org/10.1134/S0036023621050223
  16. Polyoxometalates: from Platonic Solids to Antiretroviral Activity, Pope, M.T. and Müller, A., Eds., Dordrecht: Kluwer Academic Publishers, 1994.
  17. Prudent, R., Moucadel, V., Laudet, B., Barette, C., Lafanechère, L., Hasenknopf, B., Li, J., Bareyt, S., Lacôte, E., Thorimbert, S., Malacria, M., Gouzerh, P., and Cochet, C., Chem. Biol., 2008, vol. 15, no. 7, p. 683. https://doi.org/10.1016/j.chembiol.2008.05.018
  18. Ostroushko, A.A., Grzhegorzhevskii, K.V., Medvedeva, S.Yu., Gette, I.F., Tonkushina, M.O., Gagarin, I.D., and Danilova, I.G., Nanosystems: Physics, Chemistry, Mathematics, 2021, vol. 12, no. 1, p. 81. https://doi.org/10.17586/2220-8054-2021-12-1-81-112
  19. Lopatina, O.A., Suetina, I.A., Mezentseva, M.V., Russu, L.I., Kovalevskii, S.A., Balashov, E.M., Ulasevich, S.A., Kulak, A.I., Kulemin, D.A., Ivashkevich, N.M., and Dalidchik, F.I., Khim. Fiz., 2020, vol. 39, no. 1, p. 52. https://doi.org/10.31857/S0207401X20010070
  20. Semenov, S.A., Musatova, V.Y., Drobot, D.V., and Dzhardimalieva, G.I., Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, p. 61.
  21. Pronin, A.S., Semenov, S.A., Drobot, D.V., Volchkova, E.V., and Dzhardimalieva, G.I., Russ. J. Inorg. Chem., 2020, vol. 65, no. 8, p. 1173. https://doi.org/10.1134/S0036023620080136
  22. Pomogailo, A.D. and Dzhardimalieva, G.I., Metallopolimernye gibridnye nanokompozity (Metal-Polymer Hybrid Nanocomposites), Moscow: Nauka, 2015.
  23. Patel, K. and Patel, A., Mater. Res. Bull., 2012, vol. 47, p. 425
  24. Li, Y., Yang, X.-Y., Feng, Y., Yong, Z.-Y., and Su, B.-L., Crit. Rev. Solid State Mater. Sci., 2012, vol. 37, no. 1, p. 1. https://doi.org/10.1080/10408436.2011.606512
  25. Abdulwahab, K.O., Malik, M.A., O’Brien, P., and Timco, G.A., Mater. Sci. Semicond. Process., 2014, vol. 27, p. 303. https://doi.org/10.1016/j.mssp.2014.06.052
  26. Saikia, D., Saikia, P.K., Gogoi, P.K., Das, V.R., Sengupta, P., and Shelke, M.V., Mater. Chem. Phys., 2011, vol. 131, nos. 1–2, p. 223. https://doi.org/10.1016/j.matchemphys.2011.09.011
  27. Asif, N.M., Bi Bi, R., Tariq, M., Shaheen, N., Khalid, M., Nadeem, M., Khan M. Ali, and Ansari, T.M., Russ. J. Inorg. Chem., 2021, vol. 66, no. 3, p. 340. https://doi.org/10.1134/S0036023621030025
  28. Moroz, Ya.A. and Cherednichenko, L.A., Vestn. DonNU, Ser. A: Estest. Nauki, 2018, no. 1, p. 95.
  29. Moroz, Ya.A., Lozinskii, N.S., Lopanov, A.N., and Chebyshev, K.A., Inorg. Mater., 2021, vol. 57, no. 8, p. 835. https://doi.org/10.1134/S0020168521080069
  30. Pope, M.T., Heteropoly and Isopoly Oxometallates, Berlin: Springer-Verlag, 1983.
  31. Kato, C.N., Ukai, N., Miyamae, D., Arata, S., Kashiwagi, T., Nagami, M., Mori, T., Kataoka, Y., Kitagawa, Y., and Uno, H., Advanced Topics in Crystallization, Books on Demand, 2015. https://doi.org/10.5772/59598
  32. Ionin, B.I. and Ershov, B.A., YaMR-spektroskopiya v organicheskoi khimii (NMR Spectroscopy in Organic Chemistry), Leningrad: Khimija, 1967, p. 140.
  33. Weakley, T.J.R., J. Crystallogr. Spectroscop. Res., 1987, vol. 17, no. 3, p. 383.
  34. Moroz, Ya.A., Lozinskii, N.S., Lopanov, A.N., Chebyshev, K.A., and Burhoveckii, V.V., Vestn. BGTU im. V.G. Shukhova, 2020, no. 12, p. 126. https://doi.org/10.34031/2071-7318-2020-5-12-126-135
  35. Gamelas, J.A., Couto, F.A., Trovgo, M.C., Cavaleiro, M.V., Cavaleiro, J.A.S., and Pedrosa de Jesus, J.D., Thermochim. Acta, 1999, vol. 326, p. 165. https://doi.org/10.1016/S0040-6031(98)00597-8
  36. Mioč, U.B., Dimitrijević, Ž., Davidović, M., Mitrović, M.M., and Colomban, Ph., J. Mater. Sci., 1994, vol. 29, p. 3705.
  37. Moroz, Ya.A. and Savos’kin, M.V., Vestn. DonNU, Ser. A: Estest. Nauki, 2020, no. 1, p. 72.