A Novel Electrochemical Sensor for the Determination of Diphenylhydramine Hydrochloride Based on a Carbon Paste Electrode (CPE) Modified with Ferrite–Cobalt–Silica/Ionic Liquid Nanocomposite

 Maryam Hosseini Ghalehno Maryam Hosseini Ghalehno , Asma Parvizi Asma Parvizi , Mohammad Mirzaei Mohammad Mirzaei
Российский электрохимический журнал
Abstract / Full Text

In this work, a novel electrochemical sensor was developed for the determination of diphenylhydramine hydrochloride (DPH). The electrochemical sensor was constructed using a carbon paste electrode (CPE) modified with ferrite–cobalt–silica nanocomposite coated with a new ionic liquid (triethyl-n-octylammonium hexafluorophosphate). In the first step, we synthesized the ferrite–cobalt–silica nanocomposites (Co–Fe2O4–SiO2) characterized with different methods such as scanning electron microscopy (SEM) and fourier transform infrared (FT-IR). In the second step, triethyl-n-octylammonium hexafluorophosphate ionic liquid (E3OAPF6) was synthesized and characterized with different methods such as proton nuclear magnetic resonance (1H NMR) and FT-IR. Ferrite–cobalt nanocomposites coated with ionic liquid were used as the carbon paste electrode modifier for voltammetry determination of DPH in the blood samples. This modified electrode offered considerable improvement in voltammetric sensitivity toward DPH, in comparison to the bare electrode. Differential pulse voltammetry (DPV) displayed a linear dynamic range from 10.0 to 700.0 pM and a detection limit of 1.8 pM for DPH.

Author information
  • Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran

    Maryam Hosseini Ghalehno, Asma Parvizi & Mohammad Mirzaei

  • Young Research Society, Shahid Bahonar University of Kerman, Kerman, Iran

    Asma Parvizi

  1. Cheraghi, S. and Taher, M.A., Fabrication of CdO/single wall carbon nanotubes modified ionic liquids carbon paste electrode as a high performance sensor in diphenhydramine analysis, J. Mol. Liq., 2016, vol. 219, p. 1023.
  2. Menachery, S.P.M., Nair, S.R., Nair, P.G., Aravind, U.K., and Aravindakumar, C.T., Transformation reactions of radicals from the oxidation of diphenhydramine: pulse radiolysis and mass spectrometric studies, Chem. Select., 2016, vol. 1, p. 924.
  3. Javanbakht, M., Namjumanesh, M.H., and Akbari-Adergani, B., Molecularly imprinted solid-phase extraction for the selective determination of bromhexine in human serum and urine with high performance liquid chromatography, Talanta, 2009, vol. 80, p. 133.
  4. Ye, L. and Stewart, J.T., HPLC determination of an ondan-setron and diphenhydramine mixture in 0.9% sodium chloride injection, J. Liq. Chromatogr. Relat. Technol., 1996, vol. 19, p. 711.
  5. El-Didamony, A.M. and Moustafa, M.A., Spectrophotometric determination of diphenhydramine hydrochloride in pharmaceutical preparations and biological fluids via ion-pair formation, Arab. J. Chem., 2010, vol. 3, p. 265.
  6. Punde, N.S., Rajpurohit, A.S., and Srivastava, A.K., Sensitive electrochemical platform based on nano-cylindrical strontium titanate/N-doped graphene hybrid composite for simultaneous detection of diphenhydramine and bromhexine, Electrochim. Acta, 2019, vol. 319, p. 727.
  7. Liu, J., Cao, W., Yang, X., and Wang, E., Determination of diphenhydramine by capillary electrophoresis with tris (2,2′-bipyridyl) ruthenium(II) electrochemiluminescence detection, Talanta, 2003, vol. 59, p. 453.
  8. Perez-Ruiz, T., Martınez-Lozano, C., Sanz, A., and Bravo, E., Determination of bromhexine and ambroxol in pharmaceutical dosage forms, urine and blood serum, J. Chromatogr. B. Biomed., 1997, vol. 692, p. 199.
  9. Akl, M., Frag, E.Y., Mohamed, G.G., and Bashanaini, M.S., Construction of modified screen-printed and carbon paste electrodes for electrochemical determination of antihistaminic diphenhydramine hydrochloride in pure and pharmaceutical preparations, Int. J. Electrochem. Sci., 2013, vol. 8, p. 11546.
  10. Norouzi, P., Dousty, F., Ganjali, M.R., and Daneshgar, P., Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formulation and biological fluid, Int. J. Electrochem. Sci., 2009, vol. 4, p. 1373.
  11. Guo, Y.G., Hu, J.S., and Wan, L.J., Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, vol. 20, p. 2878.
  12. Baghbamidi, S.E., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.
  13. Ganjali, M.R., Beitollahi, H., Zaimbashi, R., Tajik, S., Rezapour, M., and Larijani, B., Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite, Int. J. Electrochem. Sci., 2018, vol. 13, p. 2519.
  14. Motaghi, M.M., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: application to real sample analysis, Int. J. Electrochem. Sci., 2016, vol. 11, p. 7849.
  15. Soltani, H., Beitollahi, H., Hatefi-Mehrjardi, A.-H., Tajik, S., and Torkzadeh-Mahani, M., Voltammetric determination of glutathione using a modified single walled carbon nanotubes paste electrode, Anal. Bioanal. Electrochem., 2014, vol. 6, p. 67.
  16. Tajik, S., Taher, M.A., and Beitollahi, H., Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode, Sens. Actuators B. Chem., 2013, vol. 188, p. 923.
  17. Chen, A. and Chatterjee, S., Nanomaterials based electrochemical sensors for biomedical applications, Chem. Soc. Rev., 2013, vol. 42, p. 5425.
  18. Hanrahan, G., Patil, D.G., and Wang, J., Electrochemical sensors for environmental monitoring: design, development and applications, Environ. Monit., 2004, vol. 6, p. 657.
  19. Beitollahi, H., Tajik, S., and Biparva, P., Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples, Measurement, 2014, vol. 56, p. 170.
  20. Mazloum-Ardakani, M. and Khoshroo, A., An electrochemical study of benzofuran derivative in modified electrode-based CNT/ionic liquids for determining nanomolar concentrations of hydrazine, Electrochim. Acta, 2013, vol. 103, p. 77.
  21. Kiasat, A.R. and Davarpanah, J., Fe3O4@silica sulfuric acid nanoparticles: an efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo [2,1-b] phthalazine-triones and pyrazolo [1,2-b] phthalazine-diones, J. Mol. Catal. A-Chem., 2013, vol. 373, p. 46.
  22. Liang, N., Hou, X., Huang, P., Jiang, C., Chen, L., and Zhao, L., Ionic liquid-based dispersive liquid–liquid microextraction combined with functionalized magnetic nanoparticle solid-phase extraction for determination of industrial dyes in water, Sci. Rep., 2017, vol. 7, p. 1.
  23. Meng, X., Devemy, J., Verney, V., Gautier, A., Husson, P., and Andanson, J.M., Improving cellulose dissolution in ionic liquids by tuning the size of the ions: impact of the length of the alkyl chains in tetraalkylammonium carboxylate, ChemSusChem., 2017, vol. 10, p. 1749.
  24. Floris, T., Kluson, P., Muldoon, M. J., and Pelantova, H., Notes on the asymmetric hydrogenation of methyl acetoacetate in neoteric solvents, Catal. Lett., 2010, vol. 134, p. 279.
  25. Bard, A.J. and Faulkner, L.R., Fundamentals and applications, Electrochem. Meth., 2001, vol. 2, p. 580.
  26. Habibi, M.H. and Parhizkar, H.J., FT-IR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3, Spectrochim. Acta A, 2014, vol. 127, p. 102.
  27. Kumbhar, V., Jagadale, A., Shinde, N., and Lokhande, C., Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application, Appl. Surf. Sci., 2012, vol. 259, p. 39.
  28. Freitas, J.M., Oliveira, T.D.C., Munoz, R.A.A., and Richter, E.M., Amperometric determination of 8-chlorotheophylline, caffeine, and diphenhydramine in a single run, Quim. Nova, 2017, vol. 40, p. 739.
  29. Švorc, Ľ., Sochr, J., Svítková, J., Rievaj, M., and Bustin, D., Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode, Electrochim. Acta, 2013, vol. 87, p. 503.