Quantum-Chemical Study of Adsorption of Tl+ Ions on Au(111)

N. A. Rogozhnikov N. A. Rogozhnikov
Российский электрохимический журнал
Abstract / Full Text

A density-functional study of the interaction of Tl+ ions with the gold surface is carried out based on the cluster model of the metal surface. The geometry and energy characteristics are assessed. Ion Tl+ exists on the surface in its ad-ionic form. The electronic state of the Au–\({\text{Tl}}_{{{\text{ads}}}}^{ + }\) system is analyzed. The involvement of the adsorbed thallium ion and the neighboring gold atoms in the formation of molecular orbitals of this system is assessed. Their formation is preferentially contributed by s-orbitals of thallium and d-orbitals of gold. It is found that in alkaline media, Tl+ ions coadsorb with OH ions to form TlOH on the surface. The possible geometrical configuration of their associate with OH ions is determined for the low and high surface coverages by OH ions.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, 630128, Novosibirsk, Russia

    N. A. Rogozhnikov

  • Novosibirsk State Technical University, 630073, Novosibirsk, Russia

    N. A. Rogozhnikov

  1. Haissinsky, M., Mécanisme des dépots électrolytiques et expériences avec les radioéléments, J. Chim. Phys., 1946, vol. 43, p. 21.
  2. Kolb, D.M., Przasnycky, M., and Gerischer, H., Underpotential deposition of metals and work function differences, J. Electroanal. Chem., 1974, vol. 54, p. 25.
  3. Kolb, D.M., Leutloff, D., and Przasnycky, M., Optical properties of gold electrode surfaces covered with metal monolayers, Surf. Sci., 1975, vol. 47, p. 622.
  4. Takamura, T., Watanabe, F., and Takamura, K., Electro-optical studies of submonolayers of lead formed on gold electrodes by faradaic adsorption in 1 M HClO4, Electrochim. Acta, 1974, vol. 19, p. 933.
  5. Adžić, R.R. and Despić, A.R., Catalytic effect of metal adatoms deposited at underpotential, J. Chem. Phys., 1974, vol. 61, p. 3482.
  6. Petrii, O.A. and Lapa, A.S., Electrochemistry of adatomic layers, Itogi Nauki Tekhn.,Ser. Elektrokhim., 1987, vol. 24, p. 96.
  7. Rhodes, A., Feliu, J.M., Aldaz, A., and Clavilier, J., The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III)/Cr(II), J. Electroanal. Chem., 1989, vol. 271, p. 127.
  8. Adžić, R., Wang, J., and Ocko. B.M., Structure of metal adlayers during the course of electrocatalytic reactions: O2 reduction on Au(111) with Tl adlayers in acid solutions, Electrochim. Acta, 1995, vol. 40, p. 83.
  9. Pošcus, D., Agafonovas, G., and Jurgaitienė, I., Effect of thallium ions on the adsorption of cyanide-containing species from cyanide and dicyanoaurate solutions on a polycrystalline gold electrode, J. Electroanal. Chem., 1997, vol. 425, p. 107.
  10. Gojo, M., Stankovic, V.D., and Poljacek, S.M., Electrochemical deposition of gold in citrate solution containing thallium, Acta Chim. Slov., 2008, vol. 55, p. 333.
  11. McJntyre, J.D.E. and Peck, W.F., Electrodeposition of gold, J. Electrochem. Soc., 1976, vol. 123, p. 1800.
  12. Bek, R.Yu., Kinetics of gold electrodeposition from alkali–cyanide solutions: the effect of infinitesimal quantities of thallium(I) nitrate, Russ. J. Electrochem., 2002, vol. 38, p. 1237.
  13. Bek, R.Yu. and Shevtsova, O.N., The effect of thallium ions on the gold dissolution rate in thiosulfate electrolytes, Russ. J. Electrochem., 2012, vol. 48, p. 1046.
  14. Wang, J.X., Adzic, R.R., Magnussen, O.M., and Ocko, B.M., Structure of electrodeposited Tl overlayers on Au (100) studied via surface X-ray scaterring, Surf. Sci., 1995, vol. 335, p. 120.
  15. Polewska, W., Wang, J.X., Ocko, B.M., and Adzic, R.R., Scanning tunneling microscopy of electrodeposited thallium monolayers on Au(111) in alkaline solution, J. Electroanal. Chem., 1994, vol. 376, p. 41.
  16. Niece, B.K. and Gewirth, A.A., Potential-step chronocoulometric and quartz crystal microbalance investigation of underpotentially deposited Tl on Au(111) electrodes, J. Phys. Chem. B, 1998, vol. 102, p. 818.
  17. Pošcus, D. and Agafonovas, G., Radiotracer study of thallium underpotential deposition on a polycrystalline gold electrode in alkaline solutions, J. Electroanalyt. Chem., 2000, vol. 493, p. 50.
  18. Shin, J.W., Bertocci, U., and Stafford, G.R., Underpotential deposition of Tl on (111)-textured Au: In situ stress and nanogravimetric measurements, J. Phys. Chem. C., 2014, vol. 114, p. 17621.
  19. Salié, G. and Bartels, K., Partial charge transfer and adsorption at metal electrodes. The underpotential deposition of Hg(I), Tl(I), Bi(III) and Cu(II) on polycrystalline gold electrodes, Electrochim. Acta, 1994, vol. 39, p. 1057.
  20. Kuznetsov, A.M., Korshin, G.V., and Saifullin, A.R., Quantum-chemical investigation of the adsorption of thallium on metals of the copper subgroup, Sov. Electrochem., 1990, vol. 26, p. 606.
  21. Liu, F.L., Zhao, Y.F., Li, X.Y., and Hao, F.Y., Ab initio study of the structure and stability of MnTln (M = Cu, Ag, Au; n = 1, 2) clusters, J. Mol. Struct.: THEOCHEM, 2007, vol. 809, p. 189.
  22. Pershina, V., Anton, J., and Jacob, T., Electronic structures and properties of MAu and MOH, where M = Tl and element 113, Chem. Phys. Lett., 2009, vol. 480, p. 157.
  23. Pershina, V., Borschevsky, A., Anton, J., and Jacob, T., Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold, J. Chem. Phys., 2010, vol. 133, p. 104304.
  24. Zaitsevskii, A, Titov, A.V., Rusakov, A.A., and van Wüllen, C., Ab initio study of element 113–gold interactions, Chem. Phys. Lett., 2011, vol. 508, p. 329.
  25. Fox-Beyer, B.S. and van Wüllen, C., Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials, Chem. Phys., 2012, vol. 395, p. 95.
  26. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999. pp. 4.29, 4.7, 4.28.
  27. König, S., Gäggeler, H.W., Eichler, R., Haenssler, F., Soverina, S., Dressler, R., Friedrich, S., Piguet, D., and Tobler, R., The production of long-lived thallium-isotopes and their thermochromatography studies on quartz and gold, PSI Annual Report 2005, Bern: Paul Scherrer Institute, 2006, p. 5.
  28. Muther, B., Eichler, R., and Gäggeler, H.W., Thermochromatography of 212Pb and 200–202Tl on quartz and gold, PSI Annual Report 2007, Bern: Paul Scherrer Institute, 2008, p. 9.
  29. Serov, A., Eichler, R., Türler, A., Wittwer, D., Gäggeler, H.W., Dressler, R., Piguet, D., and Vögele, A., Interaction of thallium species with quartz and gold surfaces, PSI Annual Report 2010, Bern: Paul Scherrer Institute, 2011, p. 6.
  30. Serov, A., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., and Gäggeler, H.W., Adsorption interaction of carrier-free thallium species with gold and quartz surfaces, Radiochim. Acta, 2013, vol. 101, p. 421.
  31. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, p. 1347.
  32. Neese, F., The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, vol. 2, p. 73.
  33. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001.
  34. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, p. 5648.
  35. Stephens, P.J, Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, p. 11623.
  36. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 1985, vol. 82, p. 284.
  37. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol. 82, p. 299.
  38. McLean, A.D. and Chandler, G.S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18, J. Chem. Phys., 1980, vol. 72, p. 5639.
  39. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, vol. 72, p. 650.
  40. Löwdin, P.-O., On the nonorthogonality problem, Adv. Quantum Chem., 1970, vol. 5, p. 185.
  41. Weinhold, F., Natural bond orbital method, in Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds., Chichester: Willey, 1998. vol. 3, p. 1792.
  42. Glendening, E.D., Landis, C.R., and Weinhold, F., Natural bond orbital methods, Wiley Interdiscip.Rev.: Comput. Mol. Sci., 2012, vol. 2, p. 1.
  43. Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, p. 1291.
  44. Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998. p. 1176.
  45. Barone, V., Cossi, M., and Tomasi, J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 1997, vol. 107, p. 3210.
  46. Barone, V. and Cossi, M., Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A, 1998, vol. 102, p. 1995.
  47. Cossi, M., Rega, N., Scalmani, G., and Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comp. Chem., 2003, vol. 24, p. 669.
  48. Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, p. 553.
  49. Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007, p. 227.
  50. Pyykkö, P., Theoretical chemistry of gold, Angew. Chem., Int. Ed., 2004, vol. 43, p. 4412.
  51. Nazmutdinov, R.R., Zinkicheva, T.T., Probst, M., Lust, K., and Lust, E., Adsorption of halide ions from aqueous solutions at a Cd(0001) electrode surface: quantum chemical modelling and experimental study, Surf. Sci., 2005, vol. 577, p. 112.
  52. Nechaev, I.V. and Vvedenskii, A.V., Quantum chemical modeling of the adsorption of chloride ion and water molecule on group 1B metals, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 137.
  53. Liu, S., Ishimoto, T., and Koyama, M., First-principles calculation of OH/OH adsorption on gold nanoparticles, Int. J. Quantum Chem., 2015, vol. 115, p. 1597.
  54. Schleyer, P.V.R., Encyclopedia of Computational Chemistry, Chichester: Wiley, 1998. vol. 1, p. 700.
  55. O’Boyle, N.M., Tenderholt, A.L., and Langner, K., Software news and updates cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, p. 839.
  56. Chambers, C.C., Hawkins, G.D., Cramer, C.J., and Truhlar, D.C., Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, J. Phys. Chem., 1996, vol. 100, p. 16385.
  57. Da Silva, E.F., Svendsen, H.F., and Merz, K.M., Explicitly representing the solvation shell in continuum solvent calculations, J. Phys. Chem. A, 2009, vol. 113, p. 6404.
  58. Desnoyers, J.E. and Jolicoeur, C., Hydration effects and thermodynamic properties of ions, in Modern Aspects of Electrochemistry, Bockris, J.O’M., and Conway, B.E., Eds., New York: Plenum, 1969. vol. 5, p. 26.
  59. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions, London: Butterworth, 1959, p. 125.
  60. Marcus, Y., Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K, J. Chem. Soc:. Faraday Trans., 1991, vol. 87, p. 2995.
  61. Bondi, A., Van der Waals volumes and radii, J. Phys. Chem., 1964, vol. 68, p. 441.
  62. Štrbac, S. and Adžić, R.R., The influence of OH chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions, J. Electroanal. Chem., 1996, vol. 403, p. 169.
  63. Bek, R.Yu., Makhnyr’, N.V., and Zelinskii, A.G., Capacitance of electric double-layer at a recoverable gold electrode, Sov. Electrochem., 1975, vol. 11, p. 1503.
  64. Chen, A. and Lipkowski, J., Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode, J. Chem. Phys. B, 1999, vol. 103, p. 682.
  65. Zhichao, S. and Lipkowski, J., Chloride adsorption at the Au(111) electrode surface, J. Electroanal. Chem., 1996, vol. 403, p. 225.
  66. Zhichao, S., Lipkowski, J., Chen, A., Pettinger, B., and Bilger, C., Ionic adsorption at the Au(111) electrode, Electrochim. Acta, 1998, vol. 43, p. 2875.
  67. Damaskin, B.B. and Baturina, O.A., Specific co-adsorption of cations and anions from binary electrolytes in the framework of the Grahame-Parsons model, Russ. J. Electrochem., 1998, vol. 34, p. 366.
  68. Guaus, E., Sanz, F., Sluyters-Rehbach, M., and Sluyters, J.H., Competitive adsorption versus surface complexation as models for the simultaneous adsorption of metal complexes and free ligands, J. Electroanal. Chem., 1995, vol. 385, p. 121.
  69. Amadelli, R., Marković, N., Adžić, R., and Yeager, E., Oxygen reduction on electrode surfaces modified by underpotential deposited species: Thallium on gold, J. Electroanal. Chem., 1983, vol. 159, p. 391.
  70. Wang, J.X., Adzic, R.R., and Ocko, B.M., X-ray scattering study of Tl adlayers on the Au(111) electrode in alkaline solutions: metal monolayer, OH coadsorption, and oxide formation, J. Phys. Chem., 1994, vol. 98, p. 7182.
  71. Stadler, R., Jusys, Z., and Baltruschat, H., Hydrogen evolution during the oxidation of formaldehyde on Au: The influence of single crystal structure and Tl-upd, Electrochim. Acta, vol. 47, p. 4485.
  72. Pessoa, A.M., Fajín, J.L.C., Gomes, J.R.B., and Cordeiro, M.N.D.S., Ionic and radical adsorption on the Au(hkl) surfaces: A DFT study, Surf. Sci., 2012, vol. 606, p. 69.
  73. Shen, K., Jia, C., Cao, B., Xu, H., Wang, J., Zhang, L., Kim, K., and Wang, W., Comparison of catalytic activity between Au(110) and Au(111) for the electro-oxidation of methanol and formic acid: Experiment and density functional theory calculation, Electrochim. Acta, 2017, vol. 256, p. 129.
  74. Nechaev, I.V. and Vvedenskii, A.V., Quantum chemical modeling of hydroxide ion adsorption on group 1B metals from aqueos solutions, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 391.
  75. Kuznetsov, An.M., Maslii, A.N., and Shapnik, M.S., Molecular–continuum model for the cyanide ion adsorption from aqueous solutions on copper metals, Russ. J. Electrochem., 2000, vol. 36, p. 1309.
  76. Liu, R., Adsorption and dissociation of H2O on Au(111) surface: A DFT study, Comput. Theor. Chem., 2013, vol. 1019, p. 141.
  77. Bligaard, T. and Nørskov, J.K., Heterogeneous catalysis, Chemical Bonding Surfaces and Interfaces, Nilsson, A., Petersson, L.G.M., and Nørskov, J.K., Eds., Amsterdam: Elsevier, 2008, pp. 258, 270.