Статья
2018

PtIr/C Catalysts Synthesized by Electrochemical Dispersion Method for Proton Exchange Membrane Fuel Cells


A. B. Kuriganova A. B. Kuriganova , I. N. Leont’ev I. N. Leont’ev , N. V. Smirnova N. V. Smirnova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518060113
Abstract / Full Text

PtIr/C electrocatalyst with the metal phase uniformly distributed over the carbon support surface and the average size of PtIr nanoparticles of 5.9 nm is synthesized by electrochemical dispersion of Pt90Ir10 alloy under the action of alternating pulse current. It is shown that the presence of iridium within the composition of a Pt/C catalyst lowers down the overpotential of CO oxidation and increases catalyst’s specific activity with respect to electrochemical oxidation of ethanol.

Author information
  • Platov South Russian State Polytechnic University, Novocherkassk, Rostov oblast, 346428, Russia

    A. B. Kuriganova & N. V. Smirnova

  • South Federal University, Rostov-on-Don, 344090, Russia

    I. N. Leont’ev

References
  1. Badwal, S.P.S., Giddey, S., Kulkarni, A., Goel, J., and Basu, S., Direct ethanol fuel cells for transport and stationary applications—A comprehensive review, Appl. Energy, 2015, vol. 145, p. 80.
  2. Antolini, E., Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Mater. Chem. Phys., 2003, vol. 78, p. 563.
  3. Thepkaew, J., Therdthianwong, S., Therdthianwong, A., Kucernak, A., and Wongyao, N., Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation, Int. J. Hydrogen Energy, 2013, vol. 38, p. 9454.
  4. Artyushkova, K., Halevi, B., Padilla, M., Atanassov, P., and Baranova, E.A., Mechanistic study of electrooxidation of ethanol on PtSn nanoparticles in alkaline and acid media, J. Electrochem. Soc., 2015, vol. 162, p. H345.
  5. Almeida, T.S., Sahin, N.E., Olivi, P., Napporn, T.W., Tremiliosi-Filho, G., De Andrade, A.R., and Kokoh, K.B., Direct Ethanol Fuel Cell on Carbon Supported Pt Based Nanocatalysts, Cham: Springer, 2016.
  6. Tayal, J., Rawat, B., and Basu, S., Bi-metallic and trimetallic Pt–Sn/C, Pt–Ir/C, Pt–Ir–Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 14884.
  7. Sahin, O., Kivrak, H., Karaman, M., and Atbas, D., The effect of iridium addition to platinum on the alcohol electrooxidation activity, Amer. J. Mater. Sci., 2015, vol. 3, p. 15.
  8. Da Silva, S.G., Assumpção, M.H.M.T., De Souza, R.F.B., Buzzo, G.S., Spinacé, E.V., Neto, A.O., and Silva, J.C.M., Electrochemical and fuel cell evaluation of PtIr/C electrocatalysts for ethanol electrooxidation in alkaline medium, Electrocatalysis, 2014, vol. 5, p. 438.
  9. Chen, W. and Chen, S., Iridium-platinum alloy nanoparticles: Composition-dependent electrocatalytic activity for formic acid oxidation, J. Mater. Chem., 2011, vol. 21, p. 9169.
  10. Ioroi, T. and Yasuda, K., Platinum-iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells, J. Electrochem. Soc., 2005, vol. 152, p. A1917.
  11. Smirnova, N.V., Kuriganova, A.B., Leont’eva, D.V., Leont’ev, I.N., and Mikheikin, A.S., Structural and electrocatalytic properties of Pt/C and Pt–Ni/C catalysts prepared by electrochemical dispersion, Kinet. Catal., 2013, vol. 54, p. 255.
  12. Smirnova, N.V., Kuriganova, A.B., Novikova, K.S., and Gerasimova, E.V., The role of carbon support morphology in the formation of catalytic layer of solidpolymer fuel cell, Russ. J. Electrochem., 2014, vol. 50, p. 899.
  13. Watt-Smith, M.J., Friedrich, J.M., Rigby, S.P., Ralph, T.R., and Walsh, F.C., Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates, J. Phys. D: Appl. Phys., 2008, vol. 41, p. 174004.
  14. Leontyev, I.N., Kuriganova, A.B., Leontyev, N.G., Hennet, L., Rakhmatullin, A., Smirnova, N.V., and Dmitriev, V., Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations, RSC Adv., 2014, vol. 4, p. 35959.
  15. Lamy, C., Belgsir, E.M., and Léger, J.-M., Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC), J. Appl. Electrochem., 2001, vol. 31, p. 799.
  16. Mukerjee, S., Particle size and structural effects in platinum electrocatalysis, J. Appl. Electrochem.,1990, vol. 20, p. 537.
  17. Leontyev, I.N., Belenov, S.V., Guterman, V.E., Haghi-Ashtiani, P., Shaganov, A.P., and Dkhil, B., Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial, J. Phys. Chem. C., 2011, vol. 115, p. 5429.
  18. Ribeiro, J., Dos Anjos, D.M., Kokoh, K.B., Coutanceau, C., Léger, J.M., Olivi, P., De Andrade, A.R., and Tremiliosi-Filho, G., Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell, Electrochim. Acta, 2007, vol. 52, p. 6997.
  19. Cao, L., Sun, G., Li, H., and Xin, Q., Carbon-supported IrSn catalysts for direct ethanol fuel cell, Fuel Cells Bull., 2007, vol. 2007, p. 12.