Examples



mdbootstrap.com



 
Статья
2022

Transmission of Optical Radiation by a Polydisperse Ice Cloud


O. V. SheferO. V. Shefer, O. K. VoitsekhovskayaO. K. Voitsekhovskaya
Российский физический журнал
https://doi.org/10.1007/s11182-022-02588-3
Abstract / Full Text

Results of calculation of the transmission function for ensembles of ice crystals typical of crystal clouds are presented as functions of the wave numbers. Considering different shapes, size spectra, and aspect ratios of randomly and predominantly oriented crystal ensembles, the transmission function is analyzed in the wavelength range from 0.5 to 15 μm. The most clearly expressed spectral features of the transmission function attendant to variations in the physical and chemical parameters of particles have been noted for large horizontally oriented plates. The influence of different particle sizes and concentrations on the transparency of the medium has been estimated.

Author information
  • National Research Tomsk Polytechnic University, Tomsk, RussiaO. V. Shefer
  • National Research Tomsk State University, Tomsk, RussiaO. K. Voitsekhovskaya
References
  1. T. F. Stocker, D. Qin, G.-K. Plattner, et al., eds., IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge; New York (2013).
  2. A. Baran, Atm. Res., 112, 45–69 (2012).
  3. A. I. Obzhirov, Yu. A. Telegin, and A. V. Boloban, Underwater Investigations and Robotics, No. 1, 56–63 (2015).
  4. B. Croft, G. R. Wentworth, R. V. Martin, et al., Nature Commun., 15, No. 7, 13444 (2016); https://doi.org/10.1038/ncomms13444/.
  5. G. Guyot, F. Olofson, P. Tunved, et al., Atmos. Chem. Phys. Discuss., 1–28 (2017); https://doi.org/10.5194/acp-2017-672.
  6. E. D. Hinckley, Laser Monitoring of the Atmosphere [Russian translation], Mir, Moscow (1976).
  7. V. A. Arkhipov, I. R. Akhmadeev, S. S. Bondarchuk, et al., Opt. Atm. Okeana, 20, No. 1, 48–52 (2007).
  8. S. J. Cooper and T. J. Garrett, Atmos. Meas. Tech., 4, 1593–1602 (2011).
  9. M. D. Alexandrov and M. I. Mishchenko, Opt. Express, 25, No. 4, A134–A150 (2017); https://doi.org/10.1364/OE.25.00A134.
  10. M. Koike, J. Ukita, J. Ström, et al., GDR Atmospheres, 1798−1822 (2019); https://doi.org/10.1029/2018JD029802.
  11. G. Moiche, O. Jourdan, J. Delanoё, et al., J. Atmos. Chem. Phys., 17, 12845–12869 (2017); https://doi.org/10.5194/acp-17-12845-2017.
  12. V. Wolf, T. Kuhn, M. Milz, et al., Atmos. Chem. Phys., 18, 17371–17386 (2018); https://doi.org/10.5194/acp-18-17371-2018.
  13. M. D. Shupe, D. D. Turner, A. Zwink, et al., J. Appl. Meteorol. Climat., 54, 1675–1689 (2015); https://doi.org/10.1175/JAMC-D-15-0054.1.
  14. A. J. Baran, J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260 (2015).
  15. H. Moosmüller and C. M. Sorensen, J. Quant. Spectrosc. Radiat. Transfer, 204, 250–255 (2018).
  16. H. Moosmüller and C. M. Sorensen, J. Quant. Spectrosc. Radiat. Transfer, 219, 333–338 (2018).
  17. B. Baum, P. Yang, A. Heymsfield, et al., J. Quant. Spectrosc. Radiat. Transfer, 146, 123−139 (2014).
  18. P. Yang, L. Bi, B. Baum, et al., Atm. Sci., 70, 330–347 (2013); https://doi.org/10.1175/JAS-D-12-039.1.
  19. C. Schmitt, M. Schnaiter, A. Heymsfield, et al., Atm. Sci., 73, 4775–4791 (2016); https://doi.org/10.1175/JAS-D-16-0126.1.
  20. L. Bi and P. Yang, J. Quant. Spectrosc. Radiat. Transfer, 189, 228–237 (2017); https://doi.org/10.1016/j.jqsrt.2016.12.007.
  21. J. Giovacchini, Q. J. R. Meteorol. Soc., 143, 3085–3093 (2017); https://doi.org/10.1002/qj.3164.
  22. O. V. Shefer, J. Quant. Spectrosc. Radiat. Transfer, 117, 104–113 (2013).
  23. O. V. Shefer, J. Quant. Spectrosc. Radiat. Transfer, 178, 350–360 (2016).
  24. C. Zhou, P. Yang, A. Dessler, and F. Liang, IEEE Geosci. Remote Sensing Lett., 10, 986–990 (2013).
  25. S. Platnick, K. Meyer, M. King, et al., Trans. Geosci. Remote Sensing, 55, 502–525 (2017).
  26. P. Yang and Q. Fu, J. Quant. Spectrosc. Radiat. Transfer, 110, 1604–1614 (2009).
  27. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds, Gidrometeoizdat, Leningrad (1984).
  28. M. A. Yurkin and A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247 (2011).
  29. M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, et al., J. Quant. Spectrosc. Radiat. Transfer, 178, 276–283 (2016).
  30. L. Bi, P. Yang, G. W. Kattawar, et al., J. Quant. Spectrosc. Radiat. Transfer, 112, 1492–1508 (2011).
  31. A. A. Popov, Proc. SPIE, 2822, 186–194 (1996).
  32. K. Boren and D. Hafman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir, Moscow (1986).
  33. H. Iwabuchi, S. Yamada, and S. Katagiri, Appl. Met. Climat., 53, 1297–1316 (2014); https://doi.org/10.1175/JAMC-D-13-0215.1.
  34. S. G. Warren and R. E. Brandt, J. Geophys. Res., 113, D14220 (1–10) (2008).
  35. H. D. Downing and D. Williams, J. Geophys. Res., 80, No. 12, 1656–1661 (1975).
  36. R. Irshad, R. G. Graindger, D. M. Peters, et al., Atmos. Chem. Phys., 9, 221–230 (2009).
  37. O. K. Voitsekhovskaya, D. E. Kashirskii, O. V. Egorov, and O. V. Shefer, J. Appl. Opt., 55, 3814–3823 (2016); https://doi.org/10.1364/AO.55.003814.