Electrochemical Interactions upon Contact of Erythrocytes with Platinum

A. Yu. Tsivadze A. Yu. Tsivadze , I. V. Goroncharovskaya I. V. Goroncharovskaya , A. K. Evseev A. K. Evseev , V. N. Andreev V. N. Andreev , O. V. Batishchev O. V. Batishchev , M. M. Gol’din M. M. Gol’din
Российский электрохимический журнал
Abstract / Full Text

Polarization and microcoulometric measurements at fixed potential on the erythrocyte suspension in neutral solutions of sodium chloride with additions of sodium sulfite revealed the presence of electroreduction and electrooxidation processes at potentials E < –150 mV and > +200 mV vs. Ag/AgCl reference electrode. These results are the direct evidence for the presence of electron transport at the charged surface/cell’s membrane interface. It is noteworthy that the potential region from –150 to +200 mV, which is characterized by the absence of electron transport at the contact of platinum with erythrocytes, closely coincides with the region of the absence of interaction between electrodes of carbon materials and blood cells.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    A. Yu. Tsivadze, V. N. Andreev & O. V. Batishchev

  • Sklifosovsky Research Institute for Emergency Medicine, Moscow, 129010, Russia

    I. V. Goroncharovskaya, A. K. Evseev & M. M. Gol’din

  1. Bauer, J., Cell Electrophoresis, Bauer, J., (Ed.), Boca Raton: CRC, 1994.
  2. Kharamonenko, S.S. and Rakityanskaya, A.A., Elektroforez kletok krovi v norme i patologii (Cell Electrophoresis in Normal and Pathology), Minsk: Belarus’, 1974.
  3. Seaman, G.V.F., Electrochemical properties of the peripheral zone of erythrocytes, Ann. N. Y. Acad. Sci., 1983, vol. 416, p. 176.
  4. Seaman, G.V.F., The surface chemistry of the erythrocyte and thrombocyte membrane, J. Supramol. Struct., 1973, vol. 1, p. 437.
  5. Sawyer, P.N., The relationship between surface charge (potential characteristics) of the vascular interface and thrombosis, Ann. N. Y. Acad. Sci., 1983, vol. 416, p. 561.
  6. Sawyer, P.N., Brattain, W.H., and Boddy, P.J., Electrochemical precipitation of human blood cells and its possible relation to intravascular thrombosis, Proc. Natl. Acad. Sci. U. S. A., 1964, vol. 51, p. 428.
  7. Sawyer, P.N., The effect of various metal interfaces on blood and other living cells, Ann. N. Y. Acad. Sci., 1968, vol. 146, p. 49.
  8. Sawyer, P.N. and Srinivasan, S., The role of electrochemical surface properties, in thrombosis at vascular interfaces: cumulative experience of studies in animals and man, Bull. N. Y. Acad. Med., 1972, vol. 48, p. 235.
  9. Godin, C. and Caprani, A., Interactions of erythrocytes with an artificial wall: influence of the electrical surface charge, Eur. Biophys. J., 1996, vol. 25, p. 25.
  10. Gingell, D. and Fornés, J.A., Demonstration of intermolecular forces in cell adhesion using a new electrochemical technique, Nature, 1975, vol. 256, p. 210.
  11. Nordenström, B., Biologically Closed Electric Circuits: Clinical, Experimental and Theoretical Evidence for an Additional Circulatory System, Stockholm: Nordic Medical, 1983.
  12. Goldin, M.M., Luzhnikov, E.A., and Suslova, I.M., Effect of electrochemical sorbent characteristics on the amount of formed elements in blood during hemosorption, Sov. Electrochem., 1980, vol. 15, p. 1366.
  13. Goldin, Mark M., Volkov, A.G., Goldfarb, Y.S., and Goldin, Mikhail M., Electrochemical aspects of hemosorption, J. Electrochem. Soc, 2006, vol. 153, p. J91.
  14. Tsivadze, A.Yu., Khubutiya, M.Sh., Stepanov, A.A., Makarov, M.S., Borovkova, N.V., Khvatov, V.B., Davydov, A.D., Grafov, B.M., and Gol’din, M.M., Selective electrochemical extraction of destroyed erythrocytes from biological media, Dokl. Phys. Chem., 2014, vol. 457, p. 131.
  15. Gennis, R.B., Biomembranes: Molecular Structure and Function, New York: Springer, 1989.
  16. Gingell, D. and Fornes, J.A., Interaction of red blood cells with a polarized electrode, Biophys. J., 1976, vol. 16, p. 1131.
  17. Allen, M.J., Electrochemical behaviour of blood. I. A voltammetric study of metabolizing erythrocytes, Collect. Czech. Chem. Commun., 1971, vol. 36, p. 658.
  18. Yamamoto, M., Charoenraks, T., Pan-Hou, H., Nakano, A., Apilux, A., and Tabata, M., Electrochemical behaviors of sulfhydryl compounds in the presence of elemental mercury, Chemosphere, 2007, vol. 69, p. 534.
  19. Ci, Y.X., Li, H.N., and Feng, J., Electrochemical method for determination of erythrocytes and leukocytes, Electroanalysis, 1998, vol. 10, p. 921.
  20. Popkov, V.A., Ershov, Yu.A., and Berlyand, A.S., Obshchaya khimiya. Biofizicheskaya khimiya. Khimiya biogennykh elementov (General Chemistry. Biophysical Chemistry. Chemistry of Biogenic Elements), Moscow: Yurait, 2011.
  21. Makarov, M.S., Borovkova, N.V., Kobzeva, E.N., Vysochin, I.V., and Khvatov, V.B., Method of morphofunctional analysis of human platelets and its clinical application, Med. Alphavit: Sovremennaya Laboratotiya, 2012, no. 3, p. 32.
  22. Divisek, J. and Kastening, B., Electrochemical generation and reactivity of the superoxide ion in aqueous solutions, J. Electroanal. Chem., 1975, vol. 65, p. 603.
  23. Brabec, V. and Mornstein, V., Electrochemical behavior of proteins at graphite electrodes. I. Electrooxidation of proteins as a new probe of protein structure and reactions, Biochim. Biophys. Acta, 1980, vol. 625, p. 43.
  24. Frew, J.E. and Hill, H.A.O., Direct and indirect electron transfer between electrodes and redox proteins, Eur. J. Biochem., 1988, vol. 172, p. 261.