Статья
2019

LiFePO4-Based Composite Electrode Material: Synthetic Approaches, Peculiarities of the Structure, and Regularities of Ionic Transport Processes


A. V. Ivanishchev A. V. Ivanishchev , I. A. Ivanishcheva I. A. Ivanishcheva , A. Dixit A. Dixit
Российский электрохимический журнал
https://doi.org/10.1134/S102319351908007X
Abstract / Full Text

This article discusses approaches to the synthesis of composite cathode materials based on lithium-intercalated transition metal phosphates (by the example of iron–lithium phosphate). Among various methods and approaches to the synthesis, solid-state synthesis with a preliminary mechanochemical treatment of a mixture of starting materials was chosen as a variant of the compromising of simplicity and processability. In a series of experiments, different factors were sequentially varied in order to identify their influence on the properties of the final product. The article further presents the results of a systematic study of the electrochemical properties of LiFePO4-based material using a set of electrochemical methods: galvanostatic and potentiostatic intermittent titration and cyclic voltammetry. An original approach to graphical presentation of the potential–lithium ion concentration dependence in the LiFePO4 electrode was developed: for LixFePO4 solid solutions, the dependence was plotted against the lithium ion concentration; in the case of Li1 – xFePO4 solid solutions, against the lithium vacancies’ concentration. This approach allowed correctly calculating and introducing the correction parameter z into the modified Randles–Ševčik equation, in order to determine the diffusion coefficient according to the cyclic voltammetry method. Analysis of the galvanostatic and potentiostatic intermittent titration transients was carried out in terms of the developed models that allow describing lithium transport in the diffusion layer with a permeable inner boundary (a mathematical model of heterogeneous system with two phases in equilibrium and an interphase boundary). A good agreement has been found between theoretically calculated and experimental current and potential transients. When varying the composition of the electrode with respect to lithium, kinetic parameters of lithium intercalation were determined: the lithium diffusion coefficient and the phase transition constant.

Author information
  • Institute of Chemistry, Saratov State University, 410012, Saratov, Russia

    A. V. Ivanishchev & I. A. Ivanishcheva

  • Department of Physics and Center for Solar Energy, Indian Institute of Technology Jodhpur, Karwad, 342 011, Jodhpur, Rajasthan, India

    A. Dixit

References
  1. Kim, J.-K., Choi, J.-W., Chauhan, G.S., Ahn, J.-H., Hwang, G.-C., Choi, J.-B., and Ahn, H.-J., Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis, Electrochim. Acta, 2008, vol. 53, p. 8258.
  2. Wang, K., Cai, R., Yuan, T., Yu, X., Ran, R., and Shao, Z., Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source, Electrochim. Acta, 2009, vol. 54, p. 2861.
  3. Gao, X., Hu, G., Peng, Z., and Du, K., LiFePO4 cathode powder with high energy density synthesized by water quenching treatment, Electrochim. Acta, 2009, vol. 54, p. 4777.
  4. Yu, F., Zhang, J., Yang, Y., and Song, G., Reaction mechanism and electrochemical performance of LiFeP-O4/C cathode materials synthesized by carbothermal method, Electrochim. Acta, 2009, vol. 54, p. 7389.
  5. Yang, L., Liang, G., Wang, L., Zhi, X., and Ou, X., Effect of consumption amount of lithium salt on the properties of LiFePO4/C cathode materials, J. Alloy. Compd., 2010, vol. 496, p. 376.
  6. Bai, Y.-M., Qiu, P., Wen, Z.-L., and Han, S.-C., Improvement of electrochemical performances of LiFeP-O4 cathode materials by coating of polythiophene, J. Alloy. Compd. 2010, vol. 508, p. 1.
  7. Zhao, B., Jiang, Y., Zhang, H., Tao, H., Zhong, M., and Jiao, Z., Morphology and electrical properties of carbon coated LiFePO4 cathode materials, J. Power Sources, 2009, vol. 189, p. 462.
  8. Liu, H.-P., Wang, Z.-X., Li, X.-H., Guo, H.-J., Peng, W.-J., Zhang, Y.-H., and Hu, Q.-Y., Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method, J. Power Sources, 2008, vol. 184, p. 469.
  9. Zhang, D., Cai, R., Zhou, Y., Shao, Z., Liao, X.-Z., and Ma, Z.-F., Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment, Electrochim. Acta, 2010, vol. 55, p. 2653.
  10. Cheng, F., Wan, W., Tan, Z., Huang, Y., Zhou, H., Chen, J., and Zhang, X., High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted solid-state reaction, Electrochim. Acta, 2011, vol. 56, p. 2999.
  11. Myung, S.-T., Komaba, S., Hirosaki, N., Yashiro, H., and Kumagai, N., Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material, Electrochim. Acta, 2004, vol. 49, p. 4213.
  12. Kadoma, Y., Kim, J.-M., Abiko, K., Ohtsuki, K., Ui, K., and Kumagai, N., Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose, Electrochim. Acta, 2010, vol. 55, p. 1034.
  13. Pei, B., Wang, Q., Zhang, W., Yang, Z., and Chen, M., Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping, Electrochim. Acta, 2011, vol. 56, p. 5667.
  14. Wang, M., Xue, Y., Zhang, K., and Zhang, Y., Synthesis of FePO4 ·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4, Electrochim. Acta, 2011, vol. 56, p. 4294.
  15. Liu, Y., Cao, C., and Li, J., Enhanced electrochemical performance of carbon nanospheres–LiFePO4 composite by PEG based sol–gel synthesis, Electrochim. Acta, 2010, vol. 55, p. 3921.
  16. Liu, Y. and Cao, C., Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method, Electrochim. Acta, 2010, vol. 55, p. 4694.
  17. Yang, G., Zhang, X., Liu, J., He, X., Wang, J., Xie, H., and Wang, R., Synthesis of LiFePO4/polyacenes using iron oxyhydroxide as an iron source, J. Power Sources, 2010, vol. 195, p. 1211.
  18. Huang, B., Zheng, X., Fan, X., Song, G., and Lu, M., Enhanced rate performance of nano–micro structured LiFePO4/C by improved process for high-power Li-ion batteries, Electrochim. Acta, 2011, vol. 56, p. 4865.
  19. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., and Liu, M., One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4, Electrochim. Acta, 2009, vol. 54, p. 3206.
  20. Waser, O., Buchel, R., Hintennach, A., Novak, P., and Pratsinis, S.E., Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries, J. Aerosol Sci., 2011, vol. 42, p. 657.
  21. Wang, Y., Sun, B., Park, J.-S., Kim, W.-S., Kim, H.-S., and Wang, G., Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization, J. Alloy. Compd., 2011, vol. 509, p. 1040.
  22. Nien, Y.-H., Carey, J.R., and Chen, J.-S., Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors, J. Power Sources, 2009, vol. 193, p. 822.
  23. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1188.
  24. Zhao, X., Tang, X., Zhang, L., Zhao, M., and Zhai, J., Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO4, Electrochim. Acta, 2010, vol. 55, p. 5899.
  25. Andersson, A.S. and Thomas, J.O., The source of first-cycle capacity loss in LiFePO4, J. Power Sources, 2001, vol. 97–98, p. 498.
  26. Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C., and Tarascon J.M., Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy, Chem. Mater., 2006, vol. 18, p. 5520.
  27. Prosini, P.P., Lisi, M., Zane, D., and Pasquali, M., Determination of the chemical diffusion coefficient of lithium in LiFePO4, Solid State Ionics, 2002, vol. 148, p. 45.
  28. Allen, J.L., Jow, T.R., and Wolfenstine, J., Kinetic Study of the Electrochemical FePO4 to LiFePO4 Phase Transition, Chem. Mater., 2007, vol. 19, p. 2108.
  29. Islam, M.S., Driscoll, D.J., Fisher, C.A.J., and Slater, P.R., Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material, Chem. Mater., 2005, vol. 17, p. 5085.
  30. Chen, G., Song, X., and Richardson, T.J., Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition, Electrochem. Solid St., 2006, vol. 9, p. A295.
  31. Prosini, P.P., Lisi, M., Scaccia, S., Carewska, M., Cardellini, F., and Pasquali, M., Synthesis and Characterization of Amorphous Hydrated FePO4 and Its Electrode Performance in Lithium Batteries, J. Electrochem. Soc., 2002, vol. 149, p. A297.
  32. Levi, M.D., Markevich, E., and Aurbach, D., Comparison between Cottrell diffusion and moving boundary models for determination of the chemical diffusion coefficients in ion-insertion electrodes, Electrochim. Acta, 2005, vol. 51, p. 98.
  33. Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Okada, S., and Goodenough, J.B., Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates, J. Electrochem. Soc., 1997, vol. 144, p. 1609.
  34. Srinivasan, V. and Newman, J., Discharge Model for the Lithium Iron-Phosphate Electrode, J. Electrochem. Soc., 2004, vol. 151, p. A1517.
  35. Wen, C.J., Boukamp, B.A., Huggins, R.A., and Weppner, W., Thermodynamic and Mass Transport Properties of “LiAl,” J. Electrochem. Soc., 1979, vol. 126, p. 2258.
  36. Uchida, T., Tanjo, Y., Wakihara, M., and Taniguchi, M., Nickel-Molybdenum Sulfide Ni2Mo6S7.9 as the Cathode of Lithium Secondary Batteries, J. Electrochem. Soc., 1990, vol. 137, p. 7.
  37. Ma, J., Wang, C., and Wroblewski, S., Kinetic characteristics of mixed conductive electrodes for lithium ion batteries, J. Power Sources, 2007, vol. 164, p. 849.
  38. Shin, H.-C. and Pyun, S.-I., The kinetics of lithium transport through Li1 – δCoO2 by theoretical analysis of current transient, Electrochim. Acta, 1999, vol. 45, p. 489.
  39. Ohzuku, T., Kitagawa, M., and Hirai, T., Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell. II X-Ray Diffractional and Electrochemical Characterization on Deep Discharge Products of Electrolytic Manganese Dioxide, J. Electrochem. Soc., 1990, vol. 137, p. 40.
  40. Ohzuku, T., Kato, J., Sawai, K., and Hirai, T., Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cells. IV. Jahn-Teller Deformation of Formula in Formula, J. Electrochem. Soc., 1991, vol. 138, p. 2556.
  41. Farcy, J., Messina, R., and Perichon, J., Kinetic Study of the Lithium Electroinsertion in  V2O5 by Impedance Spectroscopy, J. Electrochem. Soc., 1990, vol. 137, p. 1337.
  42. Tang, X.-C., Song, X.-W., Shen, P.-Z., and Jia, D.-Z., Capacity intermittent titration technique (CITT): A novel technique for determination of Li+ solid diffusion coefficient of LiMn2O4, Electrochim. Acta, 2005, vol. 50, p. 5581.
  43. Pyun, S.-I. and Kim, S.-W., Lithium transport through Li1−δMn2O4 electrode involving the ordering of lithium ion by numerical analysis of current transient, J. Power Sources, 2001, vol. 97–98, p. 371.
  44. Delacourt, C., Poizot, P., Tarascon, J.-M., and Masquelier, C., The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1, Nat. Mater., 2005, vol. 4, p. 254.
  45. Yamada, A., Koizumi, H., Sonoyama, N., and Kanno, R., Phase Change in LixFePO4, Electrochem. Solid St., 2005, vol. 8, p. A409.
  46. Yamada, A., Koizumi, H., Nishimura, S.-I., Sonoyama, N., Kanno, R., Yonemura, M., Nakamura, T., and Kobayashi, Y., Room-temperature miscibility gap in LixFePO4, Nat. Mater., 2006, vol. 5, p. 357.
  47. Prosini, P.P., Modeling the Voltage Profile for LiFeP-O4, J. Electrochem. Soc., 2005, vol. 152, p. A1925.
  48. Chung, S.-Y., Bloking, J.T., and Chiang, Y.-M., Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 2002, vol. 1, p. 123.
  49. Delacourt, C., Rodríguez-Carvaja, J., Schmitt, B., Tarascon, J.-M., and Masquelier, C., Crystal chemistry of the olivine-type LixFePO4 system (0 < x < 1) between 25 and 370°C, Solid State Sci., 2005, vol. 7, p. 1506.
  50. Tang, K., Yu, X., Sun, J., Li, H., and Huang, X., Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS, Electrochim. Acta, 2011, vol. 56, p. 4869.
  51. Zhang, S.M., Zhang, J.X., Xu, S.J., Yuan, X.J., and He, B.C., Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries, Electrochim. Acta, 2013, vol. 88, p. 287.
  52. Liu, H., Li, C., Zhang, H.P., Fu, L.J., Wu, Y.P., and Wu, H.Q., Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique, J. Power Sources, 2006, vol. 159, p. 717.
  53. Gao, F. and Tang, Z., Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries, Electrochim. Acta, 2008, vol. 53, p. 5071.
  54. Liu, J., Jiang, R., Wang, X., Huang, T., and Yu, A., The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values, J. Power Sources, 2009, vol. 194, p. 536.
  55. Li, L., Tang, X., Liu, H., Qu, Y., and Lu, Z., Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4, Electrochim. Acta, 2010, vol. 56, p. 995.
  56. Jiang, Z. and Jiang, Z.-J., Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source, J. Alloy. Compd., 2012, vol. 537, p. 308.
  57. Zhao, D., Feng, Y.-L., Wang, Y.-G., and Xia, Y.-Y., Electrochemical performance comparison of LiFePO4 supported by various carbon materials, Electrochim. Acta, 2013, vol. 88, p. 632.
  58. Sun, C.S., Zhou, Z., Xu, Z.G., Wang, D.G., Wei, J.P., Bian, X.K., and Yan, J., Improved high-rate charge/discharge performances of LiFePO4/C via V-doping, J. Power Sources, 2009, vol. 193, p. 841.
  59. Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Sycheva, V.O., Khasanova, N.R., and Antipov, E.V., Determination of lithium diffusion coefficient in LiF-ePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques, Electrochim. Acta, 2010, vol. 55, p. 2939.
  60. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., Ushakov, A.V., Sneha, M.J., Babbar, P., and Dixit, A., Models of Lithium Transport as Applied to Determination of Diffusion Characteristics of Intercalation Electrodes, Russ. J. Electrochem., 2017, vol. 53, p. 706.
  61. Shin, H.-C. and Pyun, S.-I., An investigation of the electrochemical intercalation of lithium into a Li1 ‒ δC-oO2 electrode based upon numerical analysis of potentiostatic current transients, Electrochim. Acta, 1999, vol. 44, p. 2235.
  62. Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., and Kovacheva, D., Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries, J. Power Sources, 2007, vol. 165, p. 491.
  63. Levi, M.D. and Aurbach, D., Frumkin intercalation isotherm D a tool for the description of lithium insertion into host materials: a review, Electrochim. Acta, 1999, vol. 45, p. 167.
  64. Kang, B. and Ceder, G., Battery materials for ultrafast charging and discharging, Nature, 2009, vol. 458, p. 190.
  65. Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., and Weil, F., Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nat. Mater., 2008, vol. 7, p. 665.
  66. Meethong, N., Kao, Y.-H., Carter, W.C., and Chiang, Y.-M., Comparative Study of Lithium Transport Kinetics in Olivine Cathodes for Li-ion Batteries, Chem. Mater., 2010, vol. 22, p. 1088.