The Effect of Solution pH on the Oxidation of Sulfite Ions and the Formation of Oxides on the Gold Electrode

A. G. Zelinskii A. G. Zelinskii , O. N. Novgorodtseva O. N. Novgorodtseva
Российский электрохимический журнал
Abstract / Full Text

The results of studying the effect of solution pH on the electrode process that occurs on the gold electrode in solutions of sodium sulfite, sulfuric acid, and alkali, and also in the universal buffer of Britton–Robinson (pH 2–14) are shown. In sodium sulfite solutions, this electrode process represents a combination of the oxidation of sulfite species and the formation of oxides on the gold surface that proceeds simultaneously in the same potential region. It is shown that the solution pH and the oxidation of sulfite species have no effect on the amount of gold α-oxide formed. At the same time, the solution pH has a strong effect on the oxidation of sulfite species. Thus, the voltammograms measured in solutions with pH approximately between 2 and 11 are identical, i.e., the process rate is independent of the solution acidity and its partial composition. These results suggest that in this pH region, the oxidation of sulfite ions can be interpreted by the overall reaction \(2{\text{SO}}_{3}^{{2 - }} \to {{{\text{S}}}_{{\text{2}}}}{\text{O}}_{6}^{{2 - }} + 2{\text{e}}\) to produce dithionate ions. In strongly alkaline solutions (pH 12.5–14), the oxidation potential shifts in the negative direction and the current decreases with increasing pH. These results suggest that in strongly alkaline solutions, the oxidation of sulfite ions can proceed on the partly blocked electrode surface by the reaction \({\text{SO}}_{3}^{{2 - }} + 2{\text{O}}{{{\text{H}}}^{ - }} \to {\text{SO}}_{4}^{{2 - }} + {{{\text{H}}}_{{\text{2}}}}{\text{O}} + 2{\text{e}}\) to form sulfate ions. The changeover of the mechanism of oxidation of sulfite ions takes place in a narrow potential region in solutions with pH from 11 to 12.5 and is accompanied by anomalously sharp changes in the measured current. The latter anomalies are associated with the peculiar dynamics of the process of passivation/depassivation of the electrode surface by gold oxides.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128, Novosibirsk, Russia

    A. G. Zelinskii & O. N. Novgorodtseva

  • Novosibirsk State Technical University, 630073, Novosibirsk, Russia

    O. N. Novgorodtseva

  1. O’Brien, J.A., Hinkley, J.T., Donne, S.W., and Lindquist, S.-E., The electrochemical oxidation of aqueous sulfur dioxide: A critical review of work with respect to the hybrid sulfur cycle, Electrochim. Acta, 2010, vol. 55, p. 573.
  2. Seo, E.T. and Sawyer, D.T., Electrochemical oxidation of dissolved sulphur dioxide at platinum and gold electrodes, Electrochim. Acta, 1965, vol. 10, p. 239.
  3. Samec, Z. and Weber, J., Study of the oxidation of SO2 dissolved in 0.5 M H2SO4 on a gold electrode–I. Stationary electrode, Electrochim. Acta, 1975, vol. 20, p. 403.
  4. Samec, Z. and Weber, J., Study of the oxidation of SO2 dissolved in 0.5 M H2SO4 on a gold electrode–II. A rotating disc electrode, Electrochim. Acta, 1975, vol. 20, p. 413.
  5. Varga, K., Baradlai, P., and Vertes, A., In-situ radiotracer studies of sorption processes in solutions (bi)sulfite ions—I. Polycrystalline gold, Electrochim. Acta, 1997, vol. 42, p. 1143.
  6. Quijada, C., Morallon, E., Vazquez, J.L., and Berlouis, L.E.A., Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media. A voltammetric and in-situ vibrational study. Part II. Oxidation of SO2 on bare and sulphur-modified electrodes, Electrochim. Acta, 2000, vol. 46, p. 651.
  7. Allen, J.A., Rowe, G., Hinkley, J.T., and Donne S.W., Electrochemical aspects of the Hybrid Sulfur Cycle for large scale hydrogen production, Int. J. Hydrogen Energy, 2014, vol. 39, p. 11376.
  8. Tolmachev, Y.V. and Scherson, D.A., The electrochemical oxidation of sulfite on gold: UV-Vis reflectance spectroscopy at rotating disk electrode, Electrochim. Acta, 2004, vol. 49, p. 1315.
  9. Quijada, C., Huerta, F.J., Morallón, E., Vázquez, J.L., and Berlouis, L.E.A., Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media: a voltammetric and in-situ vibrational study. Part I. Reduction of SO2: deposition of monomeric and polymeric sulfur, Electrochim. Acta, 2000, vol. 45, p. 1847.
  10. Nicol, M.J., The anodic behaviour of gold. Part I—Oxidation in acidic solution, Gold Bull., 1980, vol. 13, p. 46.
  11. Nicol, M.J., The anodic behaviour of gold. Part II—Oxidation in alkaline solution, Gold Bulletin, 1980, vol. 13, p. 105.
  12. Burke, L.D. and Nugent, P.F., The electrochemistry of gold: I. The redox behaviour of the metal in aqueous media, Gold Bull., 1997, vol. 30(2), p. 43.
  13. Petrović, Ž., Metikoš-Huković, M., Babić, R., Katić, J., and Milun, M., A multi-technique study of gold oxidation and semiconducting properties of the compact α‑oxide layers, J. Electroanal. Chem., 2009, vol. 629, p. 43.
  14. Burke, L.D., McCarthy, M.M., and Roche, M.V.C., Influence of solution pH on monolayer and multilayer oxide formation processes on gold and palladium, J. Electroanal. Chem., 1984, vol. 167, p. 291.
  15. Zelinsky, A.G. and Pirogov, B.Ya., Electrochemical oxidation of sulfite and sulfur dioxide at a renewable graphite electrode, Electrochim. Acta, 2017, vol. 231, p. 371.
  16. Zelinsky, A.G., Features of sulfite oxidation on gold anode, Electrochim. Acta, 2016, vol. 188, p. 727.
  17. Zelinsky, A.G. and Novgorodtseva, O.N., Effect of thiourea on the rate of anodic processes at gold and graphite electrodes in thiosulfate solutions, Electrochim. Acta, 2013, vol. 109, p. 482.
  18. Angerstein-Kozlowska, H., Conway, B.E., Barnett, B., and Mozota, J., The role of ion adsorption in surface oxide formation and reduction at noble metals: General features of the surface process, J. Electroanal. Chem., 1979, vol. 100, p. 417.
  19. Watanabe, T. and Gerischer, H., Photoelectrochemical studies on gold electrodes with surface oxide layers, J. Electroanal. Chem., 1981, vol. 117, p. 185.
  20. Jusys, Z. and Bruckensteine, S., Electrochemical quartz crystal microgravimetry of gold in perchloric and sulfuric acid solution, Electrochem. Solid-State Lett., 1998, vol. 1 (2), p. 74.
  21. Tian, M., Pell, W.G., and Conway, B.E., Nanogravimetry study of the initial stages of anodic surface oxide film growth at Au in aqueous HClO4 and H2SO4 by means of EQCN, Electrochim. Acta, 2003, vol. 48, p. 2675.
  22. Baten, S.M.A., Taylor, A.G., and Wilde, C.P., Second harmonic generation studies of the oxidation of metal electrodes: compact and hydrous oxide growth at gold electrodes in acid solutions, Electrochim. Acta, 2008, vol. 53, p. 6829.
  23. Giron, R.G.P. and Ferguson, G.S., Development of cathodic silence in an oxide film on gold electrode, Electrochim. Acta, 2015, vol. 180, p. 560.
  24. Reddy, A.K.N., Genshaw, M.A., and Bockris, J.O’M., Ellipsometric study of oxygen-containing films on platinum anodes, J. Chem. Phys., 1968, vol. 48, p. 671.
  25. Vetter, K.J. and Shultze, J.W., The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4. Part I. Potentiostatic pulse measurement, J. Electroanal. Chem., 1972, vol. 34, p. 131.
  26. Vetter, K.J. and Shultze, J.W., The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4. Part II. Galvanostatic pulse measurement and the model of oxide growth, J. Electroanal. Chem., 1972, vol. 34, p. 141.
  27. Xia, S.J. and Birss, V.I., A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solution, J. Electroanal. Chem., 2001, vol. 500, p. 562.
  28. Nechaev, I.V. and Vvedenskii, A.V., Quantum chemical modeling of hydroxide ion adsorption on group IB metals from aqueous solution, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 391.
  29. Ogura, K., Haruyama, S., and Nagasaki, R., The electrochemical oxidation and reduction of gold, J. Electrochem. Soc., 1971, vol. 118, p. 531.
  30. Burke, L.D., Lyons, M.E., and Whelan, D.P., Influence of solution pH on the reduction of thick anodic oxide films on gold, J. Electroanal. Chem., 1982, vol. 139, p. 131.
  31. Hunger, T., Lapicque, F., and Storck, A., Electrochemical oxidation of sulphite ions at graphite electrodes, J. Appl. Electrochem., 1991, vol. 21, p. 588.
  32. Glasstone, S. and Hickling, A., Studies in electrolytic oxidation. Part III. The formation of dithionate by the electrolytic oxidation, J. Chem. Soc., 1933, vol. 67, p. 829.
  33. Katagiri, A. and Matsubara, T., Electro-oxidation of sulfite to dithionate in presence of copper ion, J. Electrochem. Soc., 1988, vol. 135, p. 1709.
  34. Bancroft, W.D., Anode reactions, J. Chem. Soc., 1937, vol. 71, p. 195.
  35. Damaskin, B.B. and Petrii, O.A., Vvedenie v Elektokhimicheskuyu Kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1975.
  36. O’Brien, J.A., Hinkley, J.T., and Donne, S.W., Observed electrochemical oscillations during the oxidation of aqueous sulfur dioxide on sulfur modified platinum electrode, Electrochim. Acta, 2011, vol. 56, p. 4224.
  37. Cho, B.W., Yun, K.S., and Chung, I.J., A study on anodic oxidation of iodide-mediated sulfur dioxide solution, J. Electrochem. Soc., 1987, vol. 134, p. 1664.
  38. Zelinsky, A.G., Anode current on gold in mixed thiosulfate-sulfite electrolytes, Electrochim. Acta, 2015, vol. 154, p. 315.
  39. Lu, J., Dreisinger, D.B., and Cooper, W.C., Anodic oxidation of sulphite ions on graphite anodes in alkaline solution, J. Appl. Electrochem., 1999, vol. 29, p. 1161.
  40. Brevett, C.A.S. and Jonson, D.C., Anodic oxidations of sulfite, thiosulfate, and dithionite at doped PbO2-film electrodes, J. Electrochem. Soc., 1992, vol. 139, p. 1314.