Статья
2017

Square wave voltammetry for analytical determination of paracetamol using cobalt microparticles film modified platinum electrode


Merzak Doulache Merzak Doulache , Boubakeur Saidat Boubakeur Saidat , Mohamed Trari Mohamed Trari
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517050056
Abstract / Full Text

Cobalt microparticles (Co MPs) modified Pt electrode is simply and conveniently fabricated. The electrochemical properties of paracetamol (PCT) at the prepared modified electrode are investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements. Based on these techniques, a sensitive and rapid electrochemical method is developed for the determination of PCT. The result indicates that the oxidation of PCT is strongly improved at the Co MPs/Pt electrode as compared with the bare Pt electrode, with relatively high sensitivity, stability and life time. The determination of PCT on the Co MPs/Pt with square wave voltammetry displays a high sensitivity of 101 μA/mM and a low detection limit of 0.42 μM (S/N = 3) in the range (0.5–100 μM). The sensitivity of the modified electrode for the detection of PCT is almost 17 times greater than on the bare Pt electrode. The proposed method is successfully applied to the PCT determination in tablets.

Author information
  • Faculty of Sciences, (UATL), Laboratory of Physical Chemistry of Materials (LPCM), BP 37G, Laghouat, 03000, Algeria

    Merzak Doulache & Boubakeur Saidat

  • Faculty of Chemistry, (USTHB), Laboratory of Storage and Valorization of Renewable Energies (LSVRE), BP 32 El Alia, 16111, Algiers, Algeria

    Mohamed Trari

References
  1. Boopathi, M., Won, M.S., and Shim, Y.B., Anal. Chim. Acta, 2004, vol. 512, p. 191.
  2. D-Carvalho, R.M., Freire, R.S., Rath, S., and Kubota, L.T., J. Pharm. Biomed. Anal., 2004, vol. 34, p. 871.
  3. Knochen, M., Giglio, J., and Reis, B.F., J. Pharm. Biomed. Anal., 2003, vol. 33, p. 191.
  4. Bouhsain, Z., Garrigues, S., and Guardia, M.D.L., Fresenius J. Anal. Chem., 1997, vol. 357, p. 973.
  5. Sirajuddin, D., Khaskheli, A.R., Shah, A., Bhange, M.I., Niazr, A., and Mahesar, S., Spectrochim. Acta, Part A: Mol. Biomol. Spectr., 2007, vol. 68, p. 747.
  6. Ravisankar, S., Vasudevan, M., Gandhimathi, M., and Suresh, B., Talanta, 1998, vol. 46, p. 1577.
  7. Selvan, P.S., Gopinath, R., Saravanan, V.S., Gopal, N., Kumar, S.A., and Periyasamy, K., Asian J. Chem., 2007, vol. 19, p. 1004.
  8. Zhao, S., Bai, W., Yuan, H., and Xiao, D., Anal. Chim. Acta, 2006, vol. 559, p. 195.
  9. Cao, B.C.L., Medeiros, R.A., Rocha-Filho, R.C., and Mazo, L.H., Talanta, 2009, vol. 78, p. 748.
  10. Madrakian, T., Haghshenas, E., and Afkhami, A., Sens. Actuat. B: Chem., 2014, vol. 193, p. 451.
  11. Kumar, S.A., Tang, C.F., and Chen, S.M., Talanta, 2008, vol. 76, p. 997.
  12. Jia, L., Zhang, X.H., Li, Q., and Wang, S.F., J. Anal. Chem., 2007, vol. 62, p. 266.
  13. Sun, D. and Zhang, H., Microchim. Acta, 2007, vol. 158, p. 131.
  14. Ensafi, A.A., Ahmadi, N., Rezaei, B., and Abarghoui, M.M., Talanta, 2015, vol. 134, p. 745.
  15. Yang, H., Liu, B., Ding, Y., Li, L., and Ouyang, X., J. Electroanal. Chem., 2015, vol. 757, p. 88.
  16. Keyvanfard, M., Shakeri, R., Karimi-Maleh, H., and Alizad, K., Mater. Sci. Eng. C, 2013, vol. 33, p. 811.
  17. Afkhami, A., Khoshsafar, H., Bagheri, H., and Madrakian, T., Anal. Chim. Acta, 2014, vol. 831, p. 50.
  18. Jiang, Y., Zou, M., Yuan, K., and Xu, H., Electroanalysis, 1999, vol. 4, p. 254.
  19. Zheng, M., Gao, F., Wang, Q., Cai, X., Jiang, S., Huang, L., and Gao, F., Mater. Sci. Eng. C, 2013, vol. 33, p. 1514.
  20. Lechien, F., Valenta, P., Nurnberg, H.W., and Patriarche, G.J., Fresenius’ Z. Anal. Chem., 1982, vol. 105, no. 2, p. 311.
  21. Kachoosangi, R.T., Banks, C.E., and Compton, R.G., Electroanalysis, 2006, vol. 18, p. 741.
  22. Lin, X. and Li, Y., Electrochim. Acta, 2006, vol. 21, p. 5794.
  23. Pisoschi, A.M., Pop, A., Serban, A.I., and Fafaneata, C., Electrochim. Acta, 2014, vol. 121, p. 443.
  24. Pournaghi-Azar, M.H. and Ojani, R., J. Solid State Electrochem., 1999, vol. 3, p. 392.
  25. Shaidarova, L.G., Gedmina, A.V., and Budnikov, G.K., Russ. J. Appl. Chem., vol. 76, no. 5, 2003, p. 755.
  26. Shaidarova, L.G., Gedmina, A.V., Chelnokova, I.A., and Budnikov, G.K., J. Anal. Chem., 2006, vol. 61, no. 6, p. 601.
  27. Shaidarova, L.G., Gedmina, A.V., Zhaldak, E.R., Chelnokova, I.A., and Budnikov, G.K., J. Anal. Chem., 2014, vol. 69, no. 8, p. 741.
  28. Wei, M.Y., Huang, R., and Guo, L.H., J. Electroanal. Chem., 2012, vol. 664, p. 156.
  29. Rohani, T. and Taher, M.A., Talanta, 2009, vol. 78, p. 743.
  30. Zhang, X., Yu, S., He, W., Uyama, H., Xie, Q., Zhang, Lu, and Yang, F., Biosens. Bioelectron., 2014, vol. 55, p. 446.
  31. Tian, L., Bian, J., Wang, B., and Qi, Y., Electrochim. Acta, 2010, vol. 55, p. 3083.
  32. Fan, L.F., Wu, X.Q., Guo, M.D., and Gao, Y.T., Electrochim. Acta, 2007, vol. 52, p. 3654.
  33. Song, Y., He, Z., Zhu, H., Hou, H., and Wang, L., Electrochim. Acta, 2011, vol. 58, p. 757.
  34. Spătaru, T., Osiceanu, P., Munteanu, C., Spătaru, N., and Fujishima, A., J. Solid State Electrochem., 2012, vol. 16, p. 3897.
  35. Ojani, R., Raoof, J.-B., and Norouzi, B., J. Solid State Electrochem., 2011, vol. 15, p. 1139.
  36. Yang, F., Wang, J., Cao, Y., Zhang, Lu, and Zhang, X., Sens. Actuators B, 2014, vol. 205, p. 20.
  37. Shaidarova, L.G., Ziganshina, S.A., Medyantseva, E.P., and Budnikov, G.K., Russ. J. Appl. Chem., vol. 77, 2004, p. 241.
  38. Jalaliz, F. and Ranjbar, S., Russ. J. Electrochem., 2014, vol. 52, p. 37.
  39. Nicholson, R.S. and Shain, I., Anal. Chem., 1964, vol. 36, p. 706.