Статья
2020

Theoretical Analysis of Changes in the System’s Composition in the Course of Oxidative Electrolysis of Bromide Solution: pH Dependence


M. M. Petrov M. M. Petrov , D. V. Konev D. V. Konev , A. E. Antipov A. E. Antipov , N. V. Kartashova N. V. Kartashova , V. V. Kuznetsov V. V. Kuznetsov , M. A. Vorotyntsev M. A. Vorotyntsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520100109
Abstract / Full Text

Changes in the indicator electrode potential (at zero current) E and (quasi) equilibrium composition of aqueous solution in the anode chamber of the model electrolyzer, which initially contained 0.5 M concentration of bromide anions, provided that the solution was kept at a constant pH and constant (together with the gas phase above it) total number of Br atoms in all its compounds, are calculated. Theoretical analysis was carried out for four different hypotheses regarding the possible extent of electrolysis and the nature of the processes are theoretically analyzed. They are: (1) no formation of bromine compounds with positive oxidation states occurs, i.e., electrolysis only leads to the formation of molecular bromine in its various forms (the dissolved state of Br2, as well as phases of liquid bromine \({\text{Br}}_{{\text{2}}}^{{{\text{liq}}}}\), and bromine vapor in the gas space above the \({\text{Br}}_{{\text{2}}}^{{{\text{vap}}}}\) solution); (2) oxidation of bromide ions leads to the formation of bromine compounds in its oxidation state up to +1 inclusive; (3) the process proceeds with the formation of both bromate ion (BrO3-) and compounds of bromine with lower oxidation states in solution (\({\text{Br}}_{{\text{3}}}^{ - },\) \({\text{Br}}_{{\text{5}}}^{ - },\) Br2, \({\text{Br}}_{{\text{2}}}^{{{\text{liq}}}},\) \({\text{Br}}_{{\text{2}}}^{{{\text{vap}}}},\) BrO, HBrO); (4) in addition to the components specified in clause (3), the formation of the perbromate anion \(\left( {{\text{BrO}}_{{\text{4}}}^{ - }} \right)\) is also taken into consideration. All electrochemical and chemical reactions involving bromine-containing species have been taken into consideration in the hypothesis framework of the system’s evolution (1), (2), (3), or (4), are assumed to be in a (quasi)equilibrium state. Predictions for all hypotheses (1), (2), (3), or (4) have been compared at three different pH values of the solution (2, 6 and 10 of Br-containing anolyte composition’s evolution in the course of electrolysis.

Author information
  • Mendeleev University of Chemical Technology of Russia, Moscow, Russia

    M. M. Petrov, D. V. Konev, A. E. Antipov, N. V. Kartashova, V. V. Kuznetsov & M. A. Vorotyntsev

  • Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia

    M. M. Petrov, D. V. Konev, A. E. Antipov, N. V. Kartashova & M. A. Vorotyntsev

  • Lomonosov Moscow State University, Moscow, Russia

    A. E. Antipov & N. V. Kartashova

  • National Research Nuclear University “MEPhI, Moscow, Russia

    V. V. Kuznetsov

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

    M. A. Vorotyntsev

References
  1. Ferro, S. and De Battisti, A., The bromine electrode. Part I: Adsorption phenomena at polycrystalline platinum electrodes, J. Appl. Electrochem., 2004, vol. 34, no. 10, p. 981.
  2. Ferro, S., Orsan, C., and De Battisti, A., The bromine electrode. Part II: Reaction kinetics at polycrystalline Pt, J. Appl. Electrochem., 2005, vol. 35, no. 3, p. 273.
  3. Ferro, S., The bromine electrode Part III: reaction kinetics at highly boron-doped diamond electrodes, J. Appl. Electrochem., 2005, vol. 35, no. 3, p. 279.
  4. Bergman, M.E.H., Iourtchouk, T., and Rollin, J., The occurrence of bromate and perbromate on BDD anodes during electrolysis of aqueous systems containing bromide: first systematic experimental studies, J. Appl. Electrochem., 2011, vol. 41, no. 9, p. 1109.
  5. Osuga, T. and Sugino, K., Electrolytic production of bromates, J. Appl. Electrochem., 1957, vol. 104, no. 7, p. 448.
  6. Vacca, A., Mascia, M., Palmas, S., Mais, L., and Rizzardini, S., On the formation of bromate and chlorate ions during electrolysis with boron doped diamond anode for seawater treatment, J. Chem. Technol. Biotechnol., 2013, vol. 88, no. 12, p. 2244–2251.
  7. Cettou, P., Robertson, P.M., and Ibl, N., On the electrolysis of aqueous bromide solutions to bromate, Electrochim. Acta, 1984, vol. 29, no. 7, p. 875.
  8. Pavlovic, O.Z., Krstajić, N.V., and Spasojević, M.D., Formation of bromates at a RuO2/TiO2 titanium anode, Surf. Coatings Technol., 1988, vol. 34, no. 2, p. 177.
  9. Conway, B.E., Phillips, Y., and Qian, S.Y., Surface electrochemistry and kinetics of anodic bromine formation at platinum, Journal of the Chemical Society, Faraday Trans., 1995, vol. 91, no. 2, p. 283.
  10. Xu, J., Georgescu, N.S., and Scherson, D.A., The Oxidation of Bromide on Platinum Electrodes in Aqueous Acidic Solutions: Electrochemical and In Situ Spectroscopic Studies, J. Electrochem. Soc., 2014, vol. 161, no. 6, p. 392.
  11. Johnson, D.C. and Bruckenstein, S., A Ring-Disk Study of HOBr Formation at Platinum Electrodes in 1.0 M H2SO4, J. Electrochem. Soc., 1970, vol. 117, no. 4, p. 460.
  12. Grgur, B.N., Electrochemical Oxidation of Bromides on DSA/RuO2 Anode in the Semi-Industrial Batch Reactor for On-Site Water Disinfection, J. Electrochem. Soc., 2019, vol. 166, no. 2, p. 50.
  13. Petrov, M.M., Loktionov, P.A., Konev, D.V., and Antipov, A.E., Evolution of Anolyte Composition in the Oxidative Electrolysis of Sodium Bromide in a Sulfuric Acid Medium, Russ. J. Electrochem., 2019, vol. 54, p. 1233.
  14. Mastragostino, M. and Gramellini, C., Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes, Electrochim. Acta, 1985, vol. 30, no. 3, p. 373.
  15. Ferro, S. and De Battisti, A., The bromine electrode. Part I: Adsorption phenomena at polycrystalline platinum electrodes, J. Appl. Electrochem., 2004, vol. 34, no. 10, p. 981.
  16. Ferro, S., Orsan, C., and De Battisti, A., The bromine electrode. Part II: Reaction kinetics at polycrystalline Pt, J. Appl. Electrochem., 2005, vol. 35, no. 3, p. 273.
  17. Ferro, S., The bromine electrode Part III: Reaction kinetics at highly boron-doped diamond electrodes, J. Appl. Electrochem., 2005, vol. 35, no. 3, p. 279.
  18. Petrov, M.M., Konev, D.V., Kuznetsov, V.V., Antipov, A.E., Glazkov, A.T., and Vorotyntsev, M.A., Electrochemically driven evolution of Br-containing aqueous solution composition, J. Electroanal. Chem., 2019, vol. 836, p. 125.
  19. Kelley, C.M. and Tartar, H.V., On the system: bromine-water, J. Amer. Chem. Soc., 2019, vol. 78, p. 5752.
  20. Hill, J.O., Worsley, I.G., and Hepler, L.G., Calorimetric determination of the distribution coefficient and thermodynamic properties of bromine in water and carbon tetrachloride, J. Phys. Chem., 1968, vol. 72, p. 3695.
  21. Kelsall, G.H., Welham, N.J., and Diaz, M.A., Thermodynamics of Cl–H2O, Br–H2O, I–H2O, Au–Cl–H2O, Au–Br–H2O and Au-I-H2O systems at 298 K, J. Electroanal. Chem., 1993, vol. 361, nos. 1–2, p. 13.
  22. Beckwith, R.C., Wang, T.X., and Margerum, D.W., Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 1996, vol. 35, p. 995.
  23. Field, R.J. and Forsterling, H.-D., On the Oxybromine Chemistry Rate Constants with Cerium Ions in the Field-Koros-Noyes Mechanism of the Belousov–Zhabotinskii Reaction: The Equilibrium HBrO2 + \({\text{BrO}}_{{\text{3}}}^{ - }\) + H+\({\text{2BrO}}_{{\text{2}}}^{*}\) + H2O, J. Phys. Chem., 1986, vol. 90, no. 21, p. 5400.
  24. Kshirsagar, G. and Field, R.J., A kinetic and thermodynamic study of component processes in the equilibrium 5HOBr = 2Br2 + \({\text{BrO}}_{{\text{3}}}^{ - }\) + 2H2O + H+, J. Phys. Chem., 1988, vol. 92, p. 7074.
  25. Gyorgyi, L., Turanyi, T., and Field, R.J., Mechanistic details of the oscillatory Belousov–Zhabotinskii reaction, J. Phys. Chem., 1990, vol. 94, no. 18, p. 7162.
  26. Liebhafsky, H.A., The equilibrium constant of the bromine hydrolysis and its variation with temperature, J. Amer. Chem. Soc., 1934, vol. 56, p. 1500.
  27. Liebhafsky, H.A., The Hydrolysis of Bromine. The Hydration of the Halogens. The Mechanism of Certain Halogen Reactions, J. Amer. Chem. Soc, 1939, vol. 61, p. 3513.
  28. Alves, W.A., Téllez, C.A., Sala, S.O., Santos, P.S., and Faria, R.B., Dissociation and rate of proton transfer of HXO3 (X = Cl, Br) in aqueous solution determined by Raman spectroscopy, J. Raman Spectroscopy, 2001, vol. 32, p. 1032.
  29. Sáez, C., Sánchez-Carretero, A., Cañizares, P., and Rodrigo, M.A., Electrochemical synthesis of perbromate using conductive-diamond anodes, J. Appl. Electrochem., 2010, vol. 40, no. 10, p. 1715.
  30. Tarasevich, M.R., Sadkowsky, A., and Yeager, E., Oxygen Electrochemistry, in: Comprehensive Treatise of Electrochemistry. New York: Plenum, 1983, p. 301.
  31. Reier, T., Oezaslan, M., and Strasser P., Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials, ACS Catal., 2012, vol. 2, p. 1765.
  32. Mussini, T. and Longhi, P., The Halogens. Bromine, in: Bard, A.J., Parsons, R., and Jordan, J. (Eds.), Standard Potentials in Aqueous Solutions, 1st ed., New York: Marcel Dekker, 1985, p. 78.
  33. Sander, R., Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, http://www.mpchmainz. mpg.de/~sander/res/henry.html, Version 3, 1999, p. 10 (“bromine (Br)” section).