Статья
2017

Generalized Nernst layer model for convective-diffusion transport. Numerical solution for bromide ion electroreduction on inactive rotating disk electrode under steady state conditions


A. E. Antipov A. E. Antipov , M. A. Vorotyntsev M. A. Vorotyntsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517100020
Abstract / Full Text

The process of electroreduction of bromate anion BrO3 - from aqueous solutions on catalytically inactive (e.g., carbon) electrodes is theoretically described in the framework of the generalized Nernst layer model in which the Nernst-layer thickness is chosen independently for each system’s component according to the Levich formula. For this system, the numerical algorithm is developed for solving the system diffusion- kinetic equations for the case of excessive content of protons in solution and one-dimensional transport (corresponding to RDE) under stationary conditions. The results are compared with conclusions of the approximate analytical theory proposed for the same system in our recent study (J. Electroanal. Chem., 2016, vol. 779, p. 146). The closeness of the numerical and analytical data makes it possible to conclude that both approaches can be used for solving this problem. Deviations are observed only when the approximations lying in the basis of the corresponding analytical relationships are violated.

Author information
  • Mendeleev University of Chemical Technology, Moscow, 125047, Russia

    A. E. Antipov & M. A. Vorotyntsev

  • Moscow State University, Leninskie Gory, Moscow, 119992, Russia

    A. E. Antipov & M. A. Vorotyntsev

  • Institute of Problems of Chemical Physics, Chernogolovka, Moscow Region, 142432, Russia

    M. A. Vorotyntsev

  • University of Burgundy, Institute of Molecular Chemistry, Dijon, France

    M. A. Vorotyntsev

References
  1. Frumkin, A.N. and Florianovich, G.M., Electrreduction of anions, Dokl. Akad. Nauk SSSR, 1951, vol. 80, p. 907.
  2. Florianovich, G.M. and Frumkin, A.N., On the mechanism of electroreduction of anions on mercury electrode, Zh. Fiz. Khim, 1955, vol. 29, p. 1827.
  3. Frumkin, A.N., Nikolaeva-Fedorovich, N.V., Berezina, N.P., and Keis, H.E., The electroreduction of the S2O8 2- anion, J. Electroanal. Chem., 1975, vol. 58, p. 189.
  4. Botukhova, G.N., Borzenko, M.I., and Petrii, O.A., Effect of ammonium ions on the electroreduction of anions at a mercury electrode, Russ. J. Electrochem., 2004, vol. 40, p. 414.
  5. Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V., Konev, D.V., and Vorotyntsev, M.A., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, p. 2711.
  6. Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Y.V., Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC" mechanism. Theory for stationary 1D regime, Electrochim. Acta, 2015, vol. 173, p. 779.
  7. Antipov A.E. and Vorotyntsev, M.A., Bromate anion electroreduction on inactive RDE under steady-state conditions. Numerical study of ion transport processes and comproportionation reaction Russ. J. Electrochem., 2016, vol. 52, p. 925.
  8. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959.
  9. Vorotyntsev, M.A. and Antipov, A.E., Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br–redox pair. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants, J. Electroanal. Chem., 2016, vol. 779, p. 146.
  10. Vorotyntsev M.A. and Antipov A.E. Generalized Nernst Layer Model: application to bromate anion electroreduction. Theory for stationary 1D regime for proton transport limitations, ChemElectroChem, 2016; in press.
  11. Cortes, C.E.S. and Faria, R.B., Revisiting the kinetics and mechanism of bromate-bromide reaction, J. Braz. Chem. Soc, 2001, vol. 12, p. 775.
  12. Vanysek, P., CRC Handbook of Chemistry and Physics. Internet Version 2005, Lide, D.R., Ed., Boca Raton: CRC Press, 2005. http://www.hbcpnetbase.com.
  13. Cussler, E.L., Diffusion: Mass Transfer in Fluid Systems, New York: Cambridge University Press, 1997, 2nd Edition.
  14. Simmons, J.P. and Waldeck, W.F., The system lithium bromate-water, J. Am. Chem. Soc., 1931, vol. 53, p. 1725.
  15. Kishimoto, N., Kishimoto, A., and Nakayama, A., Rapid removal of bromate ion from water streams with an electrolytic flow cell, J. Water Supply: Res. Technol.–AQUA, 2012, vol. 61, p. 103.
  16. Zhao, X., Liu, H., Li, A., Shen, Y., and Qu, J., Bromate removal by electrochemical reduction at boron-doped diamond electrode, Electrochim. Acta, 2012, vol. 62, p. 181.