Examples



mdbootstrap.com



 
Статья
2022

Phase Transitions in the Bulk and on Surfaces of Titanium Dioxide during Heat Treatment


E. A. SosnovE. A. Sosnov, A. Yu. ShevkinaA. Yu. Shevkina, A. A. MalkovA. A. Malkov, A. A. MalyginA. A. Malygin
Российский журнал физической химии А
https://doi.org/10.1134/S003602442201023X
Abstract / Full Text

Powder X-ray diffraction (XRD), atomic force microscopy (AFM), and electronic spectroscopy of diffuse reflectance (ESDR) are used to study phase transformations that occur during the heat treatment of P25 Degussa and AK-1 titanium dioxides synthesized via the hydrolysis of titanium tetrachloride (anatase modification). It is shown that separating the ESDR spectra into the components described by the Fermi–Dirac distribution reveals the coordination state of atoms on the surfaces of materials. A relationship is found that allows estimates of the area occupied by anatase- and rutile-like coordination polyhedra in two-phase titanium oxide systems, based on spectroscopic data (ESDR). It is found that a change in the phase composition of titanium dioxide detected by XRD is preceded by another in the coordination state of the surface polyhedral, according to spectra of diffuse reflectance. A change in the coordination of titanium oxide structures occurs at 100–200°C lower than the detection of the phase transition. Mechanisms for anatase/rutile phase transitions in one- and two-phase titanium oxide systems are proposed.

Author information
  • St. Petersburg State Institute of Technology, 190013, St. Petersburg, RussiaE. A. Sosnov, A. Yu. Shevkina, A. A. Malkov & A. A. Malygin
References
  1. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).https://doi.org/10.1021/cr00035a013
  2. A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2Photocatalysis: Fundamentals and Applications (BKC, Tokyo, 1999).
  3. H. Gnaser, B. Huber, and C. Ziegler, Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (Am. Sci., Stevenson Ranch, CA, 2004), Vol. 6, p. 505.
  4. Vl. P. Podol’skii and K. G. Kolesnikov, Nauch. Zh. Inzhen. Sist. Sooruzh., No. 4-3 (17), 119 (2014) [in Russian].
  5. A. Bazzo and A. Urakawa, ChemSusChem. 6, 2095 (2013).https://doi.org/10.1002/cssc.201300307
  6. M. T. Merajin, S. Sharifnia, S. N. Hosseini, et al., J. Taiwan Inst. Chem. Eng. 44, 239 (2013). https://doi.org/10.1016/j.jtice.2012.11.007
  7. N. Murakami, D. Saruwatari, T. Tsubota, et al., Curr. Org. Chem. 17, 2449 (2013).
  8. N. Singhal, A. Ali, U. Kumar, et al., Appl. Catal. A 523, 107 (2016). https://doi.org/10.1016/j.apcata.2016.05.027
  9. E. F. Belen’kii and I. V. Riskin, Chemistry and Technology of Pigments (Khimiya, Leningrad, 1974) [in Russian].
  10. K. Tanaka, M. F. V. Capule, and T. Hisanaga, Chem. Phys. Lett. 187, 73 (1991). https://doi.org/10.1016/0009-2614(91)90486-s
  11. S. S. Watson, D. Beydoun, J. A. Scott, et al., Chem. Eng. J. 95, 213 (2003).https://doi.org/10.1016/s1385-8947(03)00107-4
  12. J. Krysa, M. Keppert, J. Jirkovsky, et al., Mater. Chem. Phys. 86, 333 (2004). https://doi.org/10.1016/j.matchemphys.2004.03.021
  13. S. Dhanapandian, A. Arunachalam, and C. Manoharan, J. Sol-Gel Sci. Technol. 77, 119 (2016). https://doi.org/10.1007/s10971-015-3836-8
  14. A. S. Bakri, M. Z. Sahdan, F. Adriyanto, et al., AIP Conf. Proc. 1788, 030030 (2017). https://doi.org/10.1063/1.4968283
  15. V. A. Lebedev, D. A. Kozlov, I. V. Kolesnik, et al., Appl. Catal. B 195, 39 (2016). https://doi.org/10.1016/j.apcatb.2016.05.010
  16. X. Jiang, M. Manawan, T. Feng, et al., Catal. Today 300, 12 (2018).https://doi.org/10.1016/j.cattod.2017.06.010
  17. Product Information AEROXIDE® TiO2P25 (Evonik Resource Efficiency, 2019).
  18. A. V. Tarasov, Titanium Metallurgy (Akademkniga, Moscow, 2003) [in Russian].
  19. T. V. Andrushkevich and V. I. Bukhtiyarov, Kinet. Catal. 60, 123 (2019).https://doi.org/10.1134/S0023158419020010
  20. W. N. Delgass, G. L. Haller, R. Kellerman, et al., Spectroscopy in Heterogeneous Catalysis (Academic Press, New York, 1979).
  21. Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, Ed. by M. Che and J. C. Vedrine (Wiley-VCH, Weinheim, 2012), Vol. 1.
  22. M. Thiede and J. Melsheimer, Rev. Sci. Instrum. 73, 394 (2002). https://doi.org/10.1063/1.1430730
  23. A. A. Malkov, E. A. Sosnov, and A. A. Malygin, Russ. J. Appl. Chem. 83, 1511 (2010). https://doi.org/10.1134/S1070427210090016
  24. A. A. Malkov, Yu. A. Kukushkina, E. A. Sosnov, and A. A. Malygin, Inorg. Mater. 56, 1234 (2020). https://doi.org/10.1134/S0020168520120122
  25. V. N. Pak and V. K. Tsvetkov, Workshop on Solid Chemistry, Ed. by S. I. Kol’tsov, V. G. Korsakov, and V. M. Smirnov (LGU, Leningrad, 1985), p. 161 [in Russian].
  26. J. Cunningham and G. Al-Sayyed, J. Chem. Soc., Faraday Trans. 86, 3935 (1990). https://doi.org/10.1039/FT9908603935
  27. Z. Ambrus, K. Mogyorósi, Á. Szalai, et al., Appl. Catal. A 340, 153 (2008). https://doi.org/10.1016/j.apcata.2008.02.010
  28. C. Contescu, V. T. Popa, and J. A. Schwarz, J. Colloid Interf. Sci. 180, 149 (1996). https://doi.org/10.1006/jcis.1996.0285
  29. B. Ohtani, O. O. Prieto-Mahaney, D. Li, et al., J. Photochem. Photobiol. A 216, 179 (2010). https://doi.org/10.1016/j.jphotochem.2010.07.024
  30. J. F. Porter, Y.-G. Li, and C. K. Chan, J. Mater. Sci. 34, 1523 (1999). https://doi.org/10.1023/A:1004560129347
  31. Ch. Deiana, E. Fois, S. Coluccia, et al., J. Phys. Chem. C 114, 21531 (2010). https://doi.org/10.1021/jp107671k
  32. M. R. Hoffmann, S. T. Martin, W. Choi, et al., Chem. Rev. 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  33. A. K. Datye, G. Riegel, J. R. Bolton, et al., J. Solid State Chem. 115, 236 (1995). https://doi.org/10.1006/jssc.1995.1126
  34. A. P. Xagas, E. Androulaki, A. Hiskia, et al., Thin Solid Films 357, 173 (1999). https://doi.org/10.1016/S0040-6090(99)00561-1
  35. G. Colón, M. C. Hidalgo, and J. A. Navio, J. Photochem. Photobiol. A 138, 79 (2001). https://doi.org/10.1016/S1010-6030(00)00372-5
  36. K. Mogyorosi, I. Dekany, and J. H. Fendler, Langmuir 19, 2938 (2003).https://doi.org/10.1021/la025969a
  37. K. Nagaveni, M. S. Hegde, N. Ravishankar, et al., Langmuir 20, 2900 (2004). https://doi.org/10.1021/la035777v
  38. S. Bakardjieva, J. Šubrt, V. Štengl, et al., Appl. Catal. B 58, 193 (2005). https://doi.org/10.1016/j.apcatb.2004.06.019
  39. J. Aguado, R. van Grieken, M.-J. López-Muñoz, et al., Appl. Catal. A 312, 202 (2006). https://doi.org/10.1016/j.apcata.2006.07.003
  40. G. L. Chiarello, E. Selli, and L. Forni, Appl. Catal. B 84, 332 (2008). https://doi.org/10.1016/j.apcatb.2008.04.012
  41. J. Ryu and W. Choi, Environ. Sci. Technol. 42, 294 (2008). https://doi.org/10.1021/es071470x
  42. G. Tian, H. Fu, L. Jing, et al., J. Hazard. Mater. 161, 1122 (2009).https://doi.org/10.1016/j.jhazmat.2008.04.065
  43. H. R. Jafry, M. V. Liga, Q. Li, et al., Environ. Sci. Technol. 45, 1563 (2011). https://doi.org/10.1021/es102749e
  44. L. Mino, G. Spoto, S. Bordiga, et al., J. Phys. Chem. C 116, 17008 (2012). https://doi.org/10.1021/jp303942h
  45. V. G. Bessergenev, M. C. Mateus, A. M. Botelho do Rego, et al., Appl. Catal. A 500, 40 (2015). https://doi.org/10.1016/j.apcata.2015.05.002
  46. E. Han, K. Vijayarangamuthu, J. Youn, et al., Catal. Today 303, 305 (2018). https://doi.org/10.1016/j.cattod.2017.08.057
  47. D. M. Tobaldi, R. C. Pullar, M. P. Seabra, et al., Mater. Lett. 122, 345 (2014). https://doi.org/10.1016/j.matlet.2014.02.055
  48. T. Ohno, K. Sarukawa, K. Tokieda, et al., J. Catal. 203, 82 (2001). https://doi.org/10.1006/jcat.2001.3316
  49. R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, et al., J. Solid State Chem. 92, 178 (1991). https://doi.org/10.1016/0022-4596(91)90255-G
  50. V. Luca, S. Djajanti, and R. F. Howe, J. Phys. Chem. B 102, 10650 (1998). https://doi.org/10.1021/jp981644k
  51. D. Mardare and P. Hones, Mater. Sci. Eng. B 68, 42 (1999). https://doi.org/10.1016/s0921-5107(99)00335-9
  52. T. Bak, J. Nowotny, M. Rekas, et al., J. Phys. Chem. Solids 64, 1043 (2003). https://doi.org/10.1016/S0022-3697(02)00479-1
  53. T. Bak, T. Burg, S.-J. L. Kang, et al., J. Phys. Chem. Solids 64, 1089 (2003). https://doi.org/10.1016/S0022-3697(03)00005-2
  54. J. C. Yu, J. Yu, W. Hoa, et al., Chem. Commun., No. 19, 1942 (2001). https://doi.org/10.1039/b105471f
  55. H. Yu, J. Yu, and B. Cheng, Chemosphere 66, 2050 (2007). https://doi.org/10.1016/j.chemosphere.2006.09.080
  56. V. Ya. Shevchenko, A. E. Madison, and V. E. Shudegov, Glass Phys. Chem. 29, 577 (2003). https://doi.org/10.1023/b:gpac.0000007934.93203.f3
  57. O. V. Almjasheva, Nanosyst.: Phys., Chem., Math. 7, 1031 (2016). https://doi.org/10.17586/2220805420167610311049
  58. D. C. Hurum, K. A. Gray, T. Rajh, et al., J. Phys. Chem. B 109, 977 (2005). https://doi.org/10.1021/jp045395d
  59. E. A. Sosnov, A. A. Malkov, and A. A. Malygin, Russ. J. Phys. Chem. A 83, 642 (2009). https://doi.org/10.1134/S0036024409040219
  60. E. A. Sosnov, K. L. Vasil’eva, and A. A. Malkov, Russ. J. Phys. Chem. A 84, 1028 (2010). https://doi.org/10.1134/S0036024410060245
  61. V. Augugliaro, H. Kisch, V. Loddo, et al., Appl. Catal. A 349, 189 (2008). https://doi.org/10.1016/j.apcata.2008.07.038
  62. Yu. O. Shvadchina, M. K. Cherepivskaya, V. F. Vakulenko, et al., J. Water Chem. Technol. 37, 283 (2015). https://doi.org/10.3103/S1063455X15060041
  63. R. Trejo-Tzab, J. J. Alvarado-Gil, and P. Quintana, Top. Catal. 54, 250 (2011). https://doi.org/10.1007/s11244-011-9643-8
  64. J. A. Rengifo-Herrera, J. Kiwi, and C. Pulgarin, J. Photochem. Photobiol. A 205, 109 (2009). https://doi.org/10.1016/j.jphotochem.2009.04.015
  65. Y. Wang, L. Zhang, K. Deng, et al., J. Phys. Chem. C 111, 2709 (2007). https://doi.org/10.1021/jp066519k
  66. V. N. Pak and N. G. Ventov, Zh. Fiz. Khim. 49, 2535 (1975) [in Russian].
  67. M. Landmann, T. Köhler, S. Köppen, et al., Phys. Rev. B 86, 064201 (2012). https://doi.org/10.1103/PhysRevB.86.064201
  68. V. Petkov, G. Holzhüter, U. Tröge, et al., J. Non-Cryst. Solids 231, 17 (1998). https://doi.org/10.1016/s0022-3093(98)00418-9
  69. V. van Hoang, Phys. Status Solidi B 244, 1280 (2007). https://doi.org/10.1002/pssb.200642516
  70. H. Zhang, B. Chen, J. F. Banfield, et al., Phys. Rev. B 78, 214106 (2008). https://doi.org/10.1103/PhysRevB.78.214106
  71. K. Kaur, S. Prakash, N. Goyal, et al., J. Non-Cryst. Solids 357, 3399 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.05.034
  72. V. F. Kiselev, O. V. Krylov, Adsorption and Catalysis on Transition Metals and Their Oxides (Springer-Verlag, Berlin, 1989).
  73. B. Sun and P. G. Smirniotis, Catal. Today 88, 49 (2003). https://doi.org/10.1016/j.cattod.2003.08.006
  74. Chemical Encyclopedia, Ed. by N. S. Zefirov (BRE, Moscow, 1995), Vol. 4, p. 593 [in Russian].
  75. S. I. Kol’tsov, J. Appl. Chem. USSR 43, 1976 (1970).
  76. D. W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).
  77. R. A. Spurr and H. Myers, Anal. Chem. 29, 760 (1957). https://doi.org/10.1021/ac60125a006
  78. Yu. M. Artem’ev and V. K. Ryabchuk, Introduction to Heterogeneous Photocatalysis (SPbU, St. Petersburg, 1999) [in Russian].
  79. M. Hantusch, V. Bessergenev, M. C. Mateus, et al., Catal. Today 307, 111 (2018). https://doi.org/10.1016/j.cattod.2017.11.005
  80. N. Balázs, K. Mogyorósi, D. F. Srankó, et al., Appl. Catal. B 84, 356 (2008). https://doi.org/10.1016/j.apcatb.2008.04.018