Статья
2018

Structure and Transport Properties of Zirconia-Based Solid Solution Crystals Co-Doped with Scandium and Cerium Oxides


D. A. Agarkov D. A. Agarkov , M. A. Borik M. A. Borik , S. I. Bredikhin S. I. Bredikhin , A. V. Kulebyakin A. V. Kulebyakin , I. E. Kuritsyna I. E. Kuritsyna , E. E. Lomonova E. E. Lomonova , F. O. Milovich F. O. Milovich , V. A. Myzina V. A. Myzina , V. V. Osiko V. V. Osiko , E. A. Agarkova E. A. Agarkova , N. Yu. Tabachkova N. Yu. Tabachkova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518060022
Abstract / Full Text

The crystals of (ZrO2)1–x(Sc2O3) x (СeO2)0.01 solid solutions (x = 0.08–0.10) were obtained by directional crystallization. The crystals of the grown composites were semitransparent, opalescent, and without cracks and had varying microstructure in the bulk. In the range of compositions under study, it was impossible to obtain optically homogeneous, fully transparent crystals. The crystals grown at a growth rate of 10 mm/h had a nonuniform distribution of ceria along the length of the ingot. The introduction of ceria in an amount of 1 mol % increased the conductivity of the crystals, but the increase in the specific electric conductivity depended on the Sc2O3 content and the phase composition of the crystals. The highest conductivity was inherent in the (ZrO2)0.89(Sc2O3)0.10(CeO2)0.01 crystals.

Author information
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    D. A. Agarkov, S. I. Bredikhin, I. E. Kuritsyna & E. A. Agarkova

  • Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia

    M. A. Borik, A. V. Kulebyakin, E. E. Lomonova, V. A. Myzina & V. V. Osiko

  • National University of Science and Technology MISiS, Moscow, 119049, Russia

    F. O. Milovich & N. Yu. Tabachkova

References
  1. Goodenough, J.B., Oxide-ion electrolytes, Annu. Rev. Mater. Res., 2003, vol. 33, p. 91.
  2. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, vol. 174, p. 135.
  3. Omar, S., and Bonanos, N., Ionic Conductivity Ageing Behaviour of 10 mol % Sc2O3–1 mol % CeO2–ZrO2 Ceramics, J. Mater. Sci., 2010, vol. 45, p. 6406.
  4. Kumar, A., Jaiswal, A., Sanbui, M., and Omar, S., Scr. Mater., 2016, vol. 121, p. 10.
  5. Lee, D.-S., Kim, W.S., Choi, S.H., Kim, J., Lee, H.-W., and Lee, J.-H. Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for application of intermediate temperature SOFCs, Solid State Ionics, 2005, vol. 176, p. 33.
  6. Wang, Z., Cheng, M., and Bi, Z., Structure and impedance of ZrO2 doped with Sc2O3 and CeO2, Mater. Lett., 2005, vol. 59, p. 2579.
  7. Omar, S., Najib, W.B., Chen, W., and Bonanos, N., Electrical conductivity of 10 mol % Sc2O3–1 mol % M2O3–ZrO2 ceramics, J. Am. Ceram. Soc., 2012, vol. 95, p. 1965.
  8. Liu, M., He, C., Wang, J., Wang, W.G., and Wang, Z., Materials for intermediate temperature solid oxide fuel cell, J. Alloys Compd., 2010, vol. 502, p. 319.
  9. Abbas, H.A., Argirusis, C., Kilo, M., Wiemhöfer, H.D., Hammad, F.F., and Hanafi, Z.M., Preparation and conductivity of ternary scandia-stabilised zirconia, Solid State Ionics, 2011, vol. 184, p. 6.
  10. Tan, J., Su, Y., Tang, H., Hu, T., Yu, Q., Tursun, R., and Zhang, X., Effect of calcined parameters on microstructure and electrical conductivity of 10Sc1CeSZ, J. Alloys Compd., 2016, vol. 686, p. 394.
  11. Liu, M., He, C.R., Wang, W.G., and Wang, J.X., Synthesis and characterization of 10Sc1CeSZ powders prepared by a solid-liquid method for electrolyte-supported solid oxide fuel cells, Ceram. Int., 2014, vol. 40, p. 5441.
  12. Lee, D., Lee, I., Jeon, Y., Song, R., Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for ITSOFC, Solid State Ionics, 2005, vol. 176, p. 1021.
  13. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., and Tabachkova, N.Y. The impact of structural changes in ZrO2–Y2O3 solid solution crystals grown by directional crystallization of the melt on their transport characteristics, Mater. Lett., 2017, vol. 205, p. 186.
  14. Osiko, V.V., Borik, M.A., and Lomonova, E.E., Synthesis of Refractory Materials by Skull Melting Technique, in Springer Handbook of Crystal Growth, 2010, Part B, p. 433.
  15. Borik, M.A., Bredikhin, S.I., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Panov, V.A., Ryabochkina, P.A., Seryakov, S.V., and Tabachkova, N.Yu., Melt growth, structure and properties of (ZrO2)1 †x(Sc2O3)x solid solution crystals (x = 0.035–0.11), J. Cryst. Growth, 2016, vol. 443, p. 54.
  16. Kuz’minov, Yu.S., Lomonova, E.E., and Osiko, V.V., Tugoplavkie materialy iz holodnogo tiglja (Refractory Materials from Cold Crucible), Moscow: Nauka, 2004.
  17. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., Seryakov, S.V., and Tabachkova, N.Yu., Phase composition, structure and properties of (ZrO2)1 †x †y(Sc2O3)x(Y2O3)y solid solution crystals (x = 0.08–0.11; y = 0.01–0.02) grown by directional crystallization of the melt, J. Cryst. Growth, 2017, vol. 457, p. 122.
  18. Fujimori, H., Yashima, M., Kakihana, M., and Yoshimura, M., β-Cubic phase transition of scandiadoped zirconia solid solution: Calorimetry, X-ray diffraction, and Raman scattering, J. Appl. Phys., 2002, vol. 91, p. 6493.