Статья
2019

The Effect of Electrode Potential on the Conductivity of Polymer Complexes of Nickel with Salen Ligands


E. V. Beletskii E. V. Beletskii , Yu. A. Volosatova Yu. A. Volosatova , S. N. Eliseeva S. N. Eliseeva , O. V. Levin O. V. Levin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519030030
Abstract / Full Text

The influence of the electrode potential on the electric conductivity of polymer complexes of nickel with salen-type ligands (where salen is N,N′-ethylene-bis(salicylideneimine)) differing by substituents in ligand′s benzene ring is studied in the course of measuring cyclic voltammograms. The highest electron conductivity is observed for the film of poly[N,N′-ethylene-bis(3-methoxysalicylideneiminato) nickel(II)] (poly[Ni(CH3OSalen)]) in 1 M LiPF6 solution in the ethylene carbonate-diethylcarbonate mixture (EC: DEC = 1: 1). Poly[N,N′-ethylene-bis(3-methyl-salicyleneiminato) nickel(II)] (or poly[Ni(CH3Salen)]) was found to have the widest potential range of electronic conductivity. Conditions are selected for synthesizing films from solutions of the corresponding monomers in 1 M LiPF6 EC: DEC electrolyte. The electrode potential intervals suitable for the use of poly[Ni(CH3Salen)] as the buffer interlayer between the aluminum substrate and the cathode mass in lithium-ion batteries for protecting the latter against overcharge are found.

Author information
  • St. Petersburg State University, Institute of Chemistry, St. Petersburg, 199034, Russia

    E. V. Beletskii, Yu. A. Volosatova, S. N. Eliseeva & O. V. Levin

References
  1. Armand, M. and Tarascon, J.-M., Building better bat teries, Nature, 2008, vol. 451, p. 652.
  2. Tarascon, J.-M., Issues and challenges facing recharge able lithium batteries, Nature, 2001, vol. 414, p. 359.
  3. Crabtree, G., Perspective: The energy-storage revolution, Nature, 2015, vol. 526, p. 92.
  4. Lisbona, D. and Snee, T., A review of hazards associ ated with primary lithium and lithium-ion batteries, Process Saf. Environ. Prot., 2011 vol. 89, p. 434.
  5. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C., Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 2012, vol. 208, p. 210.
  6. Rebrov, S.G., Yanchur, S.V., Mansurov, V.S., and Moskovkin, S.A., Testing lithium-ion batteries of space applications for fire and explosion safety, Trudy MAI, 2014, vol. 72, p. 1. (in Russian)
  7. Zhang, H., Pang, J., Ai, X., Cao, Y., Yang, H., and Lu, S., Poly(3-butylthiophene)-based positive-tem perature-coefficient electrodes for safer lithium-ion batteries, Electrochim. Acta, 2016, vol. 187, p. 173.
  8. Xia, L., Li, S., Ai, X., Yang, H., and Cao, Y., Tempera ture-sensitive cathode materials for safer lithium-ion batteries, Energy Environ. Sci., 2011, vol. 4, p. 2845.
  9. Ji, W., Wang, F., Liu, D., Qian, J., Cao, Y., Chen, Z., Yang, H., and Ai, X., Building thermal-stable Li-ion batteries using a temperature-responsive cathode, Mater. Chem. A, 2016, vol. 4, p. 11239.
  10. Xia, L., Wang, D., Yang, H., Cao, Y., and Ai, X., An electrolyte additive for thermal shutdown protection of Li-ion batteries, Electrochem. Commun., 2012, vol. 25, p. 98.
  11. Heinze, J., Frontana-Uribe, B. A., and Ludwigs, S., Electrochemistry of conducting polymers-persistent models and new concepts, Chem. Rev., 2010, vol. 110, p. 4724.
  12. Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Malev, V.V., and Levin, O.V., Redox transfor mations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study, J. Solid State Electrochem., 2014, vol. 19, p. 453.
  13. Vilas-Boas, M., Freire, C., de Castro, B., Christensen, P.A., and Hillman, A.R., New insights into the structure and properties of electroactive polymer films derived from [Ni(salen)], Inorg. Chem., 1997, vol. 36, p. 4919.
  14. Leung, A.C.W. and MacLachlan, M.J., Schiff base complexes in macromolecules, J. Inorg. Organomet. Polym. Mater., 2007, vol. 17, p. 57.
  15. Ershov, V.A., Alekseeva, E.V., Konev, A.S., Chirkov, N.S., Stelmashuk, T.A., and Levin, O.V., Effect of structure of polymeric nickel complexes with salen-type ligands on the rate of their electroactivity decay in solutions of water-containing electrolytes, Russ. J. Gen. Chem., 2018, vol. 88, p. 277.
  16. Eliseeva, S.N., Alekseeva, E.V., Vereshchagin, A.A., Volkov, A.I., Vlasov, P.S. Konev, A.S., and Levin, O.V., Nickel-salen type polymers as cathode materials for rechargeable lithium batteries, Macromol. Chem. Phys., 2017, vol. 1700361, p. 1.
  17. Murugappan, K. and Castell, M.R., Bridging electrode gaps with conducting polymers around the electrical percolation threshold, Electrochem. Commun., 2018, vol. 87, p. 40.