Effect of Parameters of Pulsed Electric Field on Average Current Density through Nafion 438 Membrane in Electrodialysis Cell

S. V. Zyryanova S. V. Zyryanova , D. Yu. Butyl’skii D. Yu. Butyl’skii , S. A. Mareev S. A. Mareev , N. D. Pis’menskaya N. D. Pis’menskaya , V. V. Nikonenko V. V. Nikonenko , G. Pourcelly G. Pourcelly
Российский электрохимический журнал
Abstract / Full Text

Pulsed electric fields (PEF) have been used to advantage in electroplating for more than half a century. Recently, interest has increased in the application of these electric modes in the membrane processes. In this work, the effect of parameters (potential, frequency of current, and duty cycle) of pulsed current mode on the average current density in the electrodialysis cell is studied. For this purpose, the plots of current vs. time were measured in the mode of pulsed potential drop on a Nafion 438 (NafionTM N438) cation-exchange membrane. It is shown that the largest gain in the current density of 33% can be attained by varying parameters of PEF.

Author information
  • Kuban State University, Krasnodar, 350040, Russia

    S. V. Zyryanova, D. Yu. Butyl’skii, S. A. Mareev, N. D. Pis’menskaya & V. V. Nikonenko

  • European Institute of Membranes, UMR 5635, University of Montpellier, ENSCM, CNRS, CC047, Montpellier, Cedex 5, 34095, France

    G. Pourcelly

  1. Ibl, N.D. Some theoretical aspects of pulse electrolysis, Surf. Technol., 1980, vol.10, no. 2, p. 81.
  2. Berezin, N.B., Gudin, N.V., Filippova, A.G., Chevela, V.V., Mezhevich, Zh.V., Yakh’yaev, E.D., and Sagdeev, K.A., Elektroosazhdenie metallov i splavov iz vodnykh rastvorov kompleksnykh soedinenii (Electrodeposition of metals and alloys from aqueous solutions of complex compounds), Kazan: Kazan State Technol. University, 2006.
  3. Wasekar, N.P., Latha, S.M., Ramakrishna, M., Rao, D.S., and Sundararajan, G., Pulsed electrodeposition and mechanical properties of Ni-W/SiC nano-composite coatings, Mater. Des., 2016, vol. 112, p. 140.
  4. Mikhaylin, S. and Bazinet, L., Fouling on ionexchange membranes: Classification, characterization and strategies of prevention and control, Adv. Colloid Interface Sci., 2016, vol. 229, p. 34.
  5. Mishchuk, N.A. and Koopal, L.K., Intensification of electrodialysis by applying a non-stationary electric field, Colloids Surf. A, 2001, vol. 176, nos. 2–3, p. 195.
  6. Sistat, P., Huguet, P., Ruiz, B., Pourcelly, G., Mareev, S.A., and Nikonenko, V.V., Effect of pulsed electric field on electrodialysis of a NaCl solution in sub-limiting current regime, Electrochim. Acta., 2015, vol. 164, p. 267.
  7. Lee, H.-J., Moon, S.-H., and Tsai, S.-P., Effects of pulsed electric fields on membrane fouling in electrodialysis of NaCl solution containing humate, Sep. Purif. Technol., 2002, vol. 27, no. 2, p. 89.
  8. Ruiz, B., Sistat, P., Huguet, P., Pourcelly, G., Araya-Farias, M., and Bazinet, L., Application of relaxation periods during electrodialysis of a casein solution: impact on anion-exchange membrane fouling, J. Membr. Sci., 2007, vol. 287, no. 1, p. 41.
  9. Suwal, S., Amiot, J., Beaulieu, L., and Bazinet, L., Effect of pulsed electric field and polarity reversal on peptide/amino acid migration, selectivity and fouling mitigation, J. Membr. Sci., 2016, vol. 510, p. 405.
  10. Malek, P., Ortiz, J.M., Richards, B.S., and Schafer, A.I., Electrodialytic removal of NaCl from water: Impacts of using pulsed electric potential on ion transport and water dissociation phenomena, J. Membr. Sci., 2013, vol. 435, p. 99.
  11. Cifuentes-Araya, N., Pourcelly, G., and Bazinet, L., Water splitting proton-barriers for mineral membrane fouling control and their optimization by accurate pulsed modes of electrodialysis, J. Membr. Sci., 2013, vol. 447, p. 433.
  12. Mishchuk, N.A., Verbich, S.V., and Gonzalez-Caballero, F., Concentration polarization and specific selectivity of membranes in pulse mode, Colloid J., 2001, vol. 63, p. 586.
  13. Uzdenova, A.M., Kovalenko, A.V., Urtenov, M.K., and Nikonenko, V.V., Effect of electroconvection during pulsed electric field electrodialysis. Numerical experiments, Electrochem. Commun., 2015, vol. 51, p. 1.
  14. Chandrasekar, M.S. and Pushpavanam, M., Pulse and pulse reverse plating–Conceptual, advantages and applications, Electrochim. Acta, 2008, vol. 53, p. 3313.
  15. Mikhaylin, S., Nikonenko, V., Pourcelly, G., and Bazinet, L., Intensification of demineralization process and decrease in scaling by application of pulsed electric field with short pulse/pause conditions, J. Membr. Sci., 2014, vol. 468, p. 389.
  16. Belashova, E.D., Melnik, N.A., Pismenskaya, N.D., Shevtsova, K.A., Nebavsky, A.V., Lebedev, K.A., and Nikonenko, V.V., Overlimiting mass transfer through cation-exchange membranes modified by Nafion film and carbon nanotubes, Electrochim. Acta, 2012, vol. 59, p. 412.
  17. Mareev, S.A., Butyl’skii, D.Yu., Uskov, A.V., Pis’menskaya, N.D., and Nikonenko, V.V., Onedimensional modeling of the results of chronopotentiometry in overlimiting current modes, Kondens. Sredy Mezhfazn. Granitsy, 2015, vol. 17, no.2, p. 171.
  18. Volodina, E., Pismenskaya, N., Nikonenko, V., Larchet, C., and Pourcelly, G., Ion transfer across ionexchange membranes with homogeneous and heterogeneous surfaces, J. Colloid Interface Sci., 2005, vol. 285, p. 247.
  19. Pis’menskaya, N.D., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., Sistat, P., Pourcelly, G., and Larshe, K., Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes, Russ. J. Electrochem., 2007, vol. 43, p. 307.
  20. Rubinstein, I., Zaltzman, B., and Kedem, O., Electric fields in and around ion-exchange membranes, J. Membr. Sci., 1997, vol. 125, p. 17.