Examples



mdbootstrap.com



 
Статья
2021

TiS2 As Negative Electrode Material for Sodium-Ion Electric Energy Storage Devices


Liping ZhaoLiping Zhao, Gang LiuGang Liu, Yeming WangYeming Wang, Ye ZhaoYe Zhao, Zehong LiuZehong Liu, Ya WangYa Wang, Miaomiao TianMiaomiao Tian, Peng ZhangPeng Zhang
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421090120
Abstract / Full Text

Titanium disulfide (TiS2) was synthesized by a simple solid phase method. The physical properties of TiS2 were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX). Scanning and transmission electron microscopy (SEM and TEM) were used to study the structural and morphological characteristics. The synthesized TiS2 was applied as negative electrode material for TiS2/graphite electric storage devices with organic electrolytes based on Na+-ions. The electrochemical methods were used to characterize the charge storage mechanism of TiS2. The TiS2/graphite electric energy storage device possessed a working voltage of 3.5 V. The fabricated device showed relatively high performance rate and excellent cycle stability in electrochemical tests.

Author information
  • Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, 130052, Changchun, P. R. ChinaLiping Zhao, Gang Liu, Yeming Wang, Zehong Liu, Ya Wang, Miaomiao Tian & Peng Zhang
  • FAW Tooling Die Manufacturing Co., Ltd., 130013, Changchun, P. R. ChinaYe Zhao
References
  1. Z. Jiang, Y. H. Li, J. Zhu, B. Li, C. C. Li, L. Wang, W. Meng, Z. X. He, and L. Dai, J. Alloys Compd. 791, 176 (2019).
  2. P. C. Liu, L. Xiao, Y. W. Tang, Y. F. Chen, L. G. Ye, and Y. R. Zhu, J. Therm. Anal. Calorim. 136, 1323 (2019).
  3. Z. C. Song, X. L. Lu, Q. Hu, J. Ren, W. Q. Zhang, Q. J. Zheng, and D. M. Lin, J. Power Sources 421, 23 (2019).
  4. D. Lepage, L. Savignac, M. Saulnier, S. Gervais, and S. B. Schougaard, Electrochem. Commun. 102, 1 (2019).
  5. Q. L. Fan, S. D. Yang, J. Liu, H. D. Liu, K. J. Lin, R. Liu, C. Y. Hong, L. Y. Liu, Y. Chen, K. An, P. Liu, Z. C. Shi, and Y. Yang, J. Power Sources 421, 91 (2019).
  6. C. Zhang, L. Shen, J. Q. Shen, F. Liu, G. Chen, R. Tao, S. X. Ma, Y. T. Peng, and Y. F. Lu, Adv. Mater. 31, e1808338 (2019).
  7. L. P. Zhao, G. Liu, P. Zhang, L. Q. Sun, L. N. Cong, T. Wu, B. H. Zhang, W. Lu, H. M. Xie, and H. Y. Wang, RSC Adv. 9, 16571 (2019).
  8. J. D. Huang, Z. X. Wei, J. Q. Liao, W. Ni, C. Y. Wang, and J. M. Ma, J. Energy Chem. 33, 100 (2019).
  9. J. K. Meng, W. W. Wang, Q. C. Wang, M. H. Cao, Z. Y. Fu, X. J. Wu, and Y. N. Zhou, Electrochim. Acta 303, 32 (2019).
  10. D. Kumar and D. K. Kanchan, J. Energy Storage 22, 44 (2019).
  11. X. H. Rong, X. G. Qi, Y. X. Lu, Y. S. Wang, Y. M. Li, L. W. Jiang, K. Yang, F. Gao, X. J. Huang, L. Q. Chen, and Y. S. Hu, J. Energy Chem. 31, 132 (2019).
  12. T. C. Yuan, Y. X. Wang, J. X. Zhang, X. J. Pu, X. P. Ai, Z. X. Chen, H. X. Yang, and Y. L. Cao, Nano Energy 56, 160 (2019).
  13. X. L. Zhang, X. X. Liu, C. Yang, N. Li, T. Y. Ji, K. Yan, B. Zhu, J. H. J. P. Zhao, and Y. Li, Surf. Coat. Technol. 358, 661 (2019).
  14. J. R. Shi, Y. P. Wang, Q. Su. F. Y. Cheng, X. Z. Kong, J. D. Lin, T. Zhu, S. Q. Liang, and A. Q. Pan, Chem. Eng. J. 353, 606 (2018).
  15. D. A. Stevens and J. R. Dahn, J. Electrochem. Soc. 147, 1271 (2000).
  16. D. A. Stevens and J. R. Dahn, J. Electrochem. Soc. 147, 4428 (2000).
  17. L. P. Zhao, L. Qi, and H. Y. Wang, J. Power Sources 242, 597 (2013).
  18. L. P. Zhao, L. Qi, and H. Y. Wang, RSC Adv. 5, 15431 (2015).
  19. Z. Hu, Q. Liu, S. L. Chou, and S. X. Dou, Adv. Mater. 29, 1700606 (2017).
  20. G. A. Muller, J. B. Cook, H. S. Kim, S. H. Tolbert, and B. Dunn, Nano Lett. 15, 1911 (2015).
  21. B. Tian, W. Tang, K. Leng, Z. Chen, S. J. R. Tan, C. Peng, G. H. Ning, W. Fu, C. Su, G. W. Zheng, and K. P. Loh, ACS Energy Lett. 2, 1835 (2017).
  22. S. H. Chung, L. Luo, and A. Manthiram, ACS Energy Lett. 3, 568 (2018).
  23. K. Sun, Q. Zhang, D. C. Bock, X. Tong, D. Su, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, and H. Gan, J. Electrochem. Soc. 0164, A1291 (2017).
  24. Y. Y. Zhao, W. L. Cai, Y. T. Fang, H. S. Ao, Y. C. Zhu, and Y. T. Qian, ChemElectroChem 8, 2231 (2019).
  25. D. Y. Oh, Y. E. Choi, D. H. Kim, Y. G. Lee, B. S. Kim, J. Park, H. Sohn, and Y. S. Jung, J. Mater. Chem. A 4, 10329 (2016).
  26. A. Unemoto, T. Ikeshoji, S. Yasaku, M. Matsuo, V. Stavila, T. J. Udovic, and S. Orimo, Chem. Mater. 27, 5407 (2015).
  27. L. Ma, S. Y. Wei, H. L. L. Zhuang, K. E. Hendrickson, R. G. Hennig, and L. A. Archer, J. Mater. Chem. A 3, 19857 (2015).
  28. J. E. Trevey, C. R. Stoldt, and S. H. Lee, J. Electrochem. Soc. 158, A1282 (2011).
  29. D. S. Tchitchekova, A. Ponrouch, R. Verrelli, T. Broux, C. Frontera, A. Sorrentino, F. Barde, N. Biskup, M. E. Arroyo-de Dompablo, and M. R. Palacin, Chem. Mater. 30, 847 (2019).
  30. S. H. Chung and A. Manthiram, Adv. Energy Mater. 9, 13289 (2019).
  31. X. Sun, P. Bonnick, and L. F. Nazar, ACS Energy Lett. 1, 297 (2016).
  32. D. S. Tchitchekova, A. Ponrouch, R. Verrelli, T. Broux, C. Frontera, A. Sorrentino, F. Bardé, N. Biskup, M. E. Arroyo-de Dompablo, and M. R. Palacín, Chem. Mater. 30, 847 (2018).
  33. X. Q. Sun, P. Bonnick, and L. F. Nazar, ACS Energy Lett. 1, 297 (2016).
  34. L. P. Zhao, G. Liu, P. Zhang, L. Q. Sun, L. N. Cong, W. Lu, Q. Q. Sun, H. M. Xie, and H. Y. Wang, Chem. Pap. 73, 2583 (2019).