Ionic Conductivity of Solid Solutions and Composites Based on Sm2W3O12

A. F. Guseva A. F. Guseva , N. N. Pestereva N. N. Pestereva , E. L. Vostrotina E. L. Vostrotina , D. D. Otcheskikh D. D. Otcheskikh , D. A. Lopatin D. A. Lopatin
Российский электрохимический журнал
Abstract / Full Text

The conductivity of samples based on Sm2W3O12 obtained by using homogeneous (solid solutions Sm2 –xМxW3O12 – 0.5x, where М = Ca, Zn) and heterogeneous (composites (1 φ)Sm2W3O12–φWO3) doping is studied. The introduction of 1 mol % М2+ into the Sm3+ sublattice increases the conductivity by a factor 1.5–2; the introduction of a larger amount of М2+ produces multiphase samples. The heterogeneous doping of the oxygen-ion conductor Sm2W3O12 by tungsten oxide increases the ionic conductivity more than 10 times.

Author information
  • Ural Federal University named after the First President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia

    A. F. Guseva, N. N. Pestereva, E. L. Vostrotina, D. D. Otcheskikh & D. A. Lopatin

  1. Uvarov, N.F., Ionics of nanoheterogeneous materials, Russ. Chem. Rev., 2007, vol. 76, p. 415.
  2. Ponomareva, V.G. and Lavrova, G.V., Effect of the excess protons on the electrotransport, structural and thermodynamic properties of CsH2PO4, Solid State Ionics, 2017, vol. 304. p. 90.
  3. Mateyshina, Y., Slobodyuk, A., Kavun, V., and Uvarov, N., Conductivity and NMR study of composite solid electrolytes CsNO2–A (A = SiO2, Al2O3, MgO), Solid State Ionics, 2018, vol. 324, p. 196.
  4. Mateyshina, Y. and Uvarov, N., The effect of oxide additives on the transport properties of cesium nitrite, Solid State Ionics, 2018, vol. 324, p. 1.
  5. Kuz’min, A.V., Meshcherskikh, A.N., Gorelov, V.P., and Plaksin, S.V. New solid electrolytes HfO2–Sc2O3–Y2O3, Russ. J. Appl. Chem., 2015, vol. 88, p. 751.
  6. Gorelov, V.P., Balakireva, V.B., and Kuz’min, A.V., Ion conductivity of perovskites CaZr1 –xScxO3–α (x = 0.03–0.20) in hydrogen-containing atmospheres, Russ. J. Electrochem., 2016, vol. 52, p. 1076.
  7. Zyryanov, V.V., Uvarov, N.F., and Ulikhin, A.S., Preparation, crystal structure, and electrical conductivity of the solid electrolyte Zr0.86Sc0.12Y0.02O1.93, Russ. J. Inorg. Mat., 2011, vol. 47, p. 888.
  8. Ponomareva, V.G. and Bagryantseva, I.N., Superprotonic CSH2PO4–CSHSO4 solid solutions, Inorg. Mater., 2012, vol. 48, p. 187.
  9. Bagryantseva, I.N. and Ponomareva, V.G., Transport and structural properties of (1 − x)CsHSO4xKH2PO4 mixed compounds, Solid State Ionics, 2012, vol. 225, p. 250.
  10. Pestereva, N., Guseva, A. Vyatkin, I., and Lopatin, D. Electrotransport in tungstates Ln2(WO4)3 (Ln = La, Sm, Eu, Gd), Solid State Ionics, 2017, vol. 301, p. 72.
  11. Pestereva, N.N., Safonova, I.G., Nokhrin, S.S., and Neiman, A.Ya., Effect of MWO4 (M = Ca, Sr, Ba) Dispersion on the interfacial processes in (+/‒)WO3|MWO4|WO3(–/+) cells and transport properties of metacomposite phases, Russ. J. Inorg. Chem., vol. 55, p. 876.
  12. Grigor’eva, L.F., Diagrammy sostoyaniya sistem tugoplavkikh oksidov (State Diagrams of Systems of Refractory Oxides), Leningrad: Nauka, 1988.
  13. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides, Acta Crystallogr, 1976, vol. 32, p. 751.
  14. Chebotin, V.N. and Perfilev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978.
  15. Uvarov, N.F., Kompositsionnye tverdye elektrolity (Composite solid electrolytes), Novosibirsk: ISSC SB RAS, 2008.
  16. Neiman, A.Ya., Pestereva, N.N., and Sharafutdinov, A.R., Conduction and transport numbers in metacomposites MeWO4–WO3 (Me = Ca, Sr, Ba), Russ. J. Electrochem., 2005, vol. 41, p. 598.
  17. Neiman, A.Ya., Pestereva, N.N., and Tsipis, E.V., Surface diffusion, migration, and conjugated processes at heterophase interfaces between WO3 and MeWO4 (Me = Ca, Sr, Ba), Russ. J. Electrochem., 2007, vol. 43, p. 672.
  18. Pestereva, N.N., Zhukova, A.Yu., and Neiman, A.Ya., Transport numbers and ionic conduction of eutectic methacomposites {(1 – x)MeWO4 · xWO3} (Me = Sr, Ba; x = 0–0.55), Russ. J. Electrochem., 2007, vol. 43, p. 1305.