Examples



mdbootstrap.com



 
Статья
2020

The Continuum Quasichemical Approximation in Vapor–Liquid Systems


E. V. VotyakovE. V. Votyakov, Yu. K. TovbinYu. K. Tovbin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420080324
Abstract / Full Text

The continuum quasichemical approximation is used to improve the accuracy of describing molecular distributions in a vapor–liquid system. It considers displacements of the molecular center of mass from the center of a cell within the lattice gas model. It also allows for (as in its discrete variant) direct correlations of interacting molecules. The probability density of a molecule being inside the cell is used as a continuous function of its coordinate. An algorithm for solving a system of integral equations is developed with respect to the pair distribution function. The effect the continuum description of the particle distribution has on the concentration dependences of the main thermodynamic functions is investigated. The approach is shown to explain the concentration dependence of the parameter of effective lateral interaction.

Author information
  • The Cyprus Institute, Energy Environment and Water Research Center, 2121, Nicosia, CyprusE. V. Votyakov
  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, RussiaYu. K. Tovbin
References
  1. T. L. Hill, Statistical Mechanics. Principles and Selected Applications (McGraw-Hill, New York, 1956).
  2. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas–Solid Interface (Nauka, Moscow, 1990; CRC, Boca Raton, 1991).
  3. Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Nauka, Moscow, 2012; CRC, Boca Raton, 2017).
  4. Yu. K. Tovbin, Russ. J. Phys. Chem. A 72, 675 (1998).
  5. Yu. K. Tovbin, Russ. J. Phys. Chem. A 79, 1903 (2005).
  6. Yu. K. Tovbin, Russ. J. Phys. Chem. A 80, 1554 (2006).
  7. E. A. Guggenheim, Mixtures (Claredon, Oxford, 1952).
  8. J. A. Barker, J. Chem. Phys. 20, 1526 (1956).
  9. M. I. Shakhparonov, Introduction to the Molecular Theory of Solutions (GITTL, Moscow, 1956) [in Russian].
  10. I. R. Prigogine, The Molecular Theory of Solutions (North-Holland, New York, 1957).
  11. N. A. Smirnova, Molecular Theories of Solutions (Khimiya, Leningrad, 1987) [in Russian].
  12. A. G. Morachevskii, N. A. Smirnova, E. M. Piotrovskaya, et al., Thermodynamics of Liquid–Vapor Equilibrium, Ed. by A. G. Morachevskii (Khimiya, Leningrad, 1989) [in Russian].
  13. I. Z. Fisher, Statistical Theory of Liquids (GIFML, Moscow, 1961; Univ. Chicago Press, Chicago, 1964).
  14. C. Croxton, Liquid State Physics (Cambridge Univ., London, 1974).
  15. A. F. Skryshevskii, Structure Analysis of Liquids and Amorphous Bodies (Vysshaya Shkola, Moscow, 1980) [in Russian].
  16. J. de Bour, Proc. R. Soc. 215 (A1120), 4 (1952).
  17. D. Henderson, J. Chem. Phys. 37, 631 (1962).
  18. O. Yu. Batalin, Yu. K. Tovbin, and V. K. Fedyanin, Zh. Fiz. Khim. 53, 3020 (1979).
  19. T. G. Paramonov, S. A. Reznikov, and R. I. Sidorov, Zh. Fiz. Khim. 54, 3104 (1980).
  20. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, USA, 1967).
  21. S. Pings, in Physics of Simple Liquids, Ed. by H. Temperley, J. Rowlinson, and G. Rushbrooke (North-Holland, Amsterdam, 1968), Vol. 2, p. 5.