Examples



mdbootstrap.com



 
Статья
2019

Production of Ethylene from Ethane Fraction by a Method Alternative to Steam Cracking


I. M. GerzelievI. M. Gerzeliev, D. Kh. FairuzovD. Kh. Fairuzov, Zh. I. GerzelievaZh. I. Gerzelieva, A. L. MaksimovA. L. Maksimov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219110120
Abstract / Full Text

The concept of a new technology for obtaining ethylene from ethane was developed and implemented. In this technology, the process is performed in two separate apparatus, reactor and regenerator between which a microspherical catalyst containing active lattice oxygen is permanently circulating. In experiments carried out in a pilot unit with a fluidized bed of the microspherical catalyst and separate delivery of the raw material and oxidizing agent, the following process parameters of the oxidative dehydrogenation of ethane into ethylene were reached: degree of ethane conversion, 35–47.5 wt %; selectivity 86–89%, and output capacity (yield of ethylene) 0.93–1.17 kg of ethylene per hour per kg of the catalyst. The technology being developed has a number of advantages over the conventional pyrolysis: higher formation selectivity of the target product, lowered process temperature, continuity, ecological safety, and lower capital expenditure.

Author information
  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, RussiaI. M. Gerzeliev, Zh. I. Gerzelieva & A. L. Maksimov
  • PAO Gazprom, Moscow, 117420, RussiaD. Kh. Fairuzov
  • Plekhanov Russian University of Economics, Moscow, 117997, RussiaZh. I. Gerzelieva
References
  1. Litvintsev, I.Yu., Chem. J., no. 5, pp. 42–46.
  2. Mukhina, T.N., Piroliz uglevodorodnogo syr 'ya (Pyrolysis of Hydrocarbon Raw Materials), Moscow: Khimiya, 1987.
  3. Braginskii, O.B., Neftegazokhimiya, 2016, no. 2, pp. 14–22.
  4. Rakhmatullin, Sh.L, Chem. J., 2015, no. 4, pp. 24–30.
  5. Gerzeliev, I.M., Usachev, N.Ya., Popov, A.Yu., and Khadzhiev, S.N., Petrol. Chem., 2012, vol. 52, no. 5, pp. 305–312. https://doi.org/10.1134/S0965544112050039
  6. Yerrayya, A. and Suresh, P.V., J. Ind. Pollut. Control, 2016, vol. 32, no. 1, pp. 390–396.
  7. Mukherjee, S., Kumar, P., Yang, A., and Fennell, P., J. Environ. Chem. Eng., 2015, vol. 3, no. 3, pp. 2104–2114. https://doi.org/10.1016/jjece.2015.07.018
  8. Gerzeliev, I.M., Usachev, N.Y, Popov, A.Yu., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 6, pp. 411–117. https://doi.org/10.1134/S0965544111060168
  9. Fleischer, V., Littlewood, P., Parishan, S., and Schomäcker, R., Chem. Eng. J., 2016, vol. 306, pp. 646–654. https://doi.Org/10.1016/j.cej.2016.07.094
  10. García-Labiano, F., de Diego, L.F., Cabello, A., Gayan, P., Abad, A., Adanez, J., and Sprachmann, G., Appl. Energy, 2016, vol. 178, pp. 736–745. https://doi.Org/10.1016/j.apenergy.2016.06.110
  11. Bakare, I.A., Mohamed, S.A., Al-Ghamdi, S., Razzak, S.A., Hossain, M.M., and de Lasa, H.I., Chem. Eng. J., 2015, vol. 278, pp. 207–216. https://doi.Org/10.1016/j.cej.2014.09.114.
  12. Al-Ghamdi, S., Volpe, M., Hossain, M.M., and de Lasa, H., Appl. Catal., A, 2013, vol. 450, pp. 120–130. https://doi.Org/10.1016/j.apcata.2012.10.007
  13. Neal, L.M., Yusuf, S., Sofranko, J.A., and Li, F., Energy Technol., 2016, vol. 4, no. 10, pp. 1200–1208. https://doi.org/10.1002/ente.201600074
  14. Khadzhiev, S.N., Usachev, N.Ya., Gerzeliev, I.M., Belanova, E.P., Kalinin, V.P., Kharlamov, V.V., Kazakov, A.V., Kanaev, S.A., Starostina, T.S., and Popov, A.Yu., Petrol. Chem., 2015, vol. 55, no. 8, pp. 651–654. https://doi.org/10.1134/S0965544115080125
  15. Khadzhiev, S.N., Usachev, N.Ya., Gerzeliev, I.M., Kalinin, V.P., Kharlamov, V.V., Belanova, E.P., Kazakov, A.V., Kanaev, S.A., and Starostina, T.S., Petrol. Chem., 2015, vol. 55, no. 8, pp. 640–644. https://doi.org/10.1134/S0965544115080113
  16. Arutyunov, V.S., Okislitel'naya konversiya prirodnogo gaza (Oxidative Conversion of Natural Gas), Moscow: KRASAND, 2011, p. 481.