Статья
2020

Electrochemical Behavior of (Fe,Ni)Ox-Based Anodes for Solid-Oxide Fuel Cells in Methane-Containing Atmospheres


V. A. Kolotygin V. A. Kolotygin , A. I. Ivanov A. I. Ivanov , D. V. Matveev D. V. Matveev , S. I. Bredikhin S. I. Bredikhin , V. V. Kharton V. V. Kharton
Российский электрохимический журнал
https://doi.org/10.1134/S102319352002007X
Abstract / Full Text

The work is devoted to investigation of the electrochemical behavior of (Fe,Ni)Ox-based composite anodes in the hydrogen- and methane-containing fuel. Among the studied composites, the optimum electrochemical characteristics were observed for anodes with Fe : Ni ratio approaching 2. In particular, for the electrodes with initial composition 50 vol % Fe0.67Ni0.33Oх–50 vol % Zr0.85Y0.15O1.93 the anode overpotential equals 20–30 mV at a current density of 50–80 mA/cm2 in 10% Н2–Ar–H2O at relatively low temperatures (873–923 K). Increasing current leads to further activation, presumably due to a partial oxidation of metallic particles located at the anode surface. However, the microstructure degradation of the anode layers still represents a significant problem for their utilization. Testing of the electrocatalytic activity of the anodes fabricated from Ni, Zr0.83Sc0.17O1.92 (ScSZ) and Ce0.9Gd0.1 O2 – δ (GDC) revealed a high activity toward catalytic partial methane oxidation with the subsequent electrochemical oxidation of the conversion products, as well as formation of carbonaceous deposits at the nickel surface. The methane conversion degree on Ni-anode comes to 60–90% and decreases with time and on cooling. The doping of nickel oxide with iron lowers the conversion degree and promotes the carbon poisoning, supposedly, because of the lowering of the anodic current density resulting from the worsening of the electrochemical activity.

Author information
  • Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    V. A. Kolotygin, A. I. Ivanov, D. V. Matveev, S. I. Bredikhin & V. V. Kharton

References
  1. Wood, T. and Ivey, D.G., The impact of redox cycling on solid oxide fuel cell lifetime, Solid Oxide Fuel Cell Lifetime and Reliability, Amsterdam: Elsevier, 2017.
  2. Chen-Wiegart, Y.-c.K., Kennouche, D., Cronin, J.S., Barnett, S.A., and Wang, J., Effect of Ni content on the morphological evolution of Ni–YSZ solid oxide fuel cell electrodes, Appl. Phys. Lett., 2016, vol. 108, p. 083903.
  3. Buyukaksoy, A. and Birss, V.I., Highly active nanoscale Ni–Yttria stabilized zirconia anodes for micro-solid oxide fuel cell applications, J. Power Sources, 2016, vol. 307, p. 449.
  4. Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., and Zhuravlev, V.D., High-performance anode-supported solid oxide fuel cell with impregnated electrodes, J. Power Sources, 2015, vol.288, p. 20.
  5. Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine, J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, p. 1800120.
  6. Dai, H., Chen, H., He, S., Cai, G., and Guo, L., Improving solid oxide fuel cell performance by a single-step co-firing process, J. Power Sources, 2015, vol. 286, p. 427.
  7. Hedayat, N., Panthi, D., and Du, Y., Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and reduced sintering steps, Electrochim. Acta, 2017, vol. 258, p. 694.
  8. Irvine, J.T.S., Neagu, D., Verbraeken, M.C., Chatzichristodoulou, C., Graves, C., and Mogensen, M.B., Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers, Nature Energy, 2016, vol. 1, p. 1.
  9. Chen, J., Bertei, A., Ruiz-Trejo, E., Atkinson, A., and Brandon, N.P., Characterization of degradation in nickel impregnated scandia-stabilize zirconia electrodes during isothermal annealing, J. Electrochem. Soc., 2017, vol. 169, p. F935.
  10. Konar, R., Mukhopadhyay, J., Sharma, A.D., and Basu, R.N., Synthesis of Cu–YSZ and Ni–Cu–YSZ cermets by a novel electroless technique for use as solid oxide fuel cell anode: Application potentiality towards fuel flexibility in biogas atmosphere, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1151.
  11. McIntosh, S. and Gorte, R.J., Direct hydrocarbon solid oxide fuel cells, Chem. Rev., 2004, vol. 104, p. 4845.
  12. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem., 2011, vol. 15, p. 1007.
  13. Park, H.C. and Virkar, A.V., Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte, J. Power Sources, 2009, vol. 186, p. 133.
  14. Gross, M.D., Vohs, J.M., and Gorte, R.J., Recent progress in SOFC anodes for direct utilization of hydrocarbons, J. Mater. Chem., 2007, vol. 17, p. 3071.
  15. Kan, H. and Lee, H., Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel, Catal. Commun., 2010, vol. 12, p. 36.
  16. Landon, J., Demeter, E., İnoğlu, N., Keturakis, C., Wachs, I.E., Vasić, R., Frenkel, A.I., and Kitchin, J.R., Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes, ACS Catal., 2012, vol. 2, p. 1793.
  17. Provendier, H., Petit, C., Estournès, C., Libs, S., and Kiennemann, A., Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition, Appl. Catal. A, 1999, vol. 180, p. 163.
  18. Tian, D., Liu, Z., Li, D., Shi, H., Pan, W., and Cheng, Y., Bimetallic Ni–Fe total-methanation catalyst for the production of substitute natural gas under high pressure, Fuel, 2013, vol. 104, p. 224.
  19. Kofstad, P.K. Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.
  20. Tret’yakov, Yu.D., Chemistry of nonstoichiometric oxides (in Russian), Moscow: Mos. Univ., 1974.
  21. Rossmeisl, J. and Bessler, W.G., Trends in catalytic activity for SOFC anode materials, Solid State Ionics, 2008, vol. 178, p. 1694.
  22. An, W., Gatewood, D., Dunlap, B., and Turner, C.H., Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory, J. Power Sources, 2011, vol. 196, p. 4724.
  23. Bredikhin, S.I., Agarkov, D.A., Aronin, A.S., Burmistrov, I.N., Matveev, D.V., and Kharton, V.V., Ion transfer in Ni-containing composite anodes of solid oxide fuel cells: A microstructural study, Mater. Lett., 2018, vol. 216, p. 193.
  24. Benrabaa, R., Löfberg, A., Caballero, J.G., Bordes-Richard, E., Rubbens, A., Vannier, R.-N., Boukhlouf, H., and Barama, A., Sol–gel synthesis and characterization of silica supported nickel ferrite catalysts for dry reforming of methane, Catal. Commun., 2015, vol. 58, p. 127.
  25. Pouran, S.R., Raman, A.A.A., and Daud, W.M.A., Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Cleaner Production, 2014, vol. 64, p. 24.
  26. Pereira, M.C., Oliveira, L.C.A., and Murad, E., Iron oxide catalysts: Fenton and Fenton-like reactions—a review, Clay Minerals, 2012, vol. 47, p. 285.
  27. Ringuedé, A., Labrincha, J.A., and Frade, J.R., A combustion synthesis method to obtain alternative cermet materials for SOFC anodes, Solid State Ionics, 2001, vol. 141, p. 549.
  28. Kolotygin, V.A., Noskova, V.A., Bredikhin, S.I., and Kharton, V.V., Redox behavior and transport properties of composites based on (Fe,Ni)3O4 ± δ for anodes of solid oxide fuel cells, Russ. J. Electrochem., 2018, vol. 54, p. 506.
  29. Kharton, V.V., Tsipis, E.V., Marozau, I.P., Viskup, A.P., Frade, J.R., and Irvine, J.T.S., Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3 – δ, Solid State Ionics, 2007, vol. 178, p. 101.
  30. Matveev, D.V., Demeneva, N.V., Bredikhin, S.I., Ivanov, A.I., and Kharton, V.V., RF Patent 2568815, 2014.
  31. Kolotygin, V.A., Noskova, V.A., Kharton, V.V., and Bredikhin, S.I., RF Patent 2661074, 2017.
  32. Patterson, D. and Levine, N.A., US Patent 4879907, 1989.
  33. Guo, J. and Heslop, M.J., Diffusion problems of soap-film flowmeter when measuring very low-rate gas flow, Flow Measurement and Instrumentation, 2004, vol. 15, p. 331.
  34. Rhamdhani, M.A., Hayes, P.C., and Jak, E., Subsolidus phase equilibria of the Fe–Ni–O System, Metal. Mater. Trans. B, 2008, vol. 39B, p. 690.
  35. Kawada, T., Sakai, N., Yokokawa, H., Dokiya, M., Mori, M., and Iwata, T., Structure and polarization characteristics of solid oxide fuel cell anodes, Solid State Ionics, 1990, vol. 40–41, p. 402.
  36. Primdahl, S. and Mogensen, M., Gas conversion impedance: a test geometry effect in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., 1998, vol. 145, p. 2431.
  37. Babaei, A., Jiang, S.P., and Li, J., Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover, J. Electrochem. Soc., 2009, vol. 156, p. B1022.
  38. Jiang, S.P. and Chan, S.H., A review of anode materials development in solid oxide fuel cells, J. Mater. Sci., 2004, vol. 39, p. 4405.
  39. Tsipis, E.V., Kharton, V.V., Bashmakov, I.A., Naumovich, E.N., and Frade, J.R., Cellulose-precursor synthesis of nanocrystalline Ce0.8Gd0.2O2 – δ for SOFC anodes, J. Solid State Electrochem., 2004, vol. 8, p. 674.
  40. Herzing, A.A., Kiely, C.J., Carley, A.F., Landon, P., and Hutchings, G.J., Identification of active gold nanoclusters on iron oxide supports for CO oxidation, Science, 2008, vol. 321, p. 1331.
  41. Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J., and Zhang, T., Single-atom catalysis of CO oxidation using Pt/FeOx,Nature Chem., 2011, vol. 3, p. 634.
  42. Cimenti, M. and Hill, J.M., Direct utilization of liquid fuels in SOFC for portable applications: challenges for the selection of alternative anodes, Energies, 2009, vol. 2, p. 377.